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Abstract: Robotic odor source localization (OSL) is a technology that enables mobile robots or 1

autonomous vehicles to find an odor source in unknown environments. An effective navigation 2

algorithm that guides the robot to approach the odor source is the key to successfully locating the odor 3

source. While traditional OSL approaches primarily utilize an Olfaction-only strategy, guiding robots 4

to find the odor source by tracing emitted odor plumes, our work introduces a fusion navigation 5

algorithm that combines both vision and olfaction-based techniques. This hybrid approach addresses 6

challenges such as turbulent airflow, which disrupts olfaction sensing, and physical obstacles inside 7

the search area, which may impede vision detection. In this work, we propose a hierarchical control 8

mechanism that dynamically shifts the robot’s search behavior among four strategies: crosswind 9

maneuver, Obstacle-avoid Navigation, Vision-based Navigation, and Olfaction-based Navigation. 10

Our methodology includes a custom-trained deep-learning model for visual target detection and a 11

moth-inspired algorithm for Olfaction-based navigation. To assess the effectiveness of our approach, 12

we implemented the proposed algorithm on a mobile robot in a search environment with obstacles. 13

Experimental results demonstrate that our Vision and Olfaction Fusion algorithm significantly 14

outperforms Vision-only and Olfaction-only methods, reducing average search time by 54% and 30%, 15

respectively. 16

Keywords: Odor source localization; moth-inspired algorithm; computer Vision-based Navigation; 17

robot operating system; multi-modal robotics. 18

1. Introduction 19

Sensory systems like olfaction, vision, audition, etc., allow animals to interact with 20

the external environment. Among these, olfaction is the oldest sensory system to evolve 21

in organisms [1]. Olfaction allows organisms with receptors for the odorant to identify 22

food, potential mating partners, dangers, and enemies [2]. In some nocturnal mammals 23

like mice, as much as five percent of the genome is devoted to olfaction [3]. Similar to 24

animals, a mobile robot integrated with a chemical sensor can detect odors in the external 25

environment. Robotic Odor source localization (OSL) is the technology that allows robots 26

to utilize olfaction sensory inputs to navigate toward an unknown target odor source in 27

the given environment [4]. It has important applications including monitoring wildfires 28

[5], locating air pollution [6], locating chemical gas leaks [7], locating unexploded mines 29

and bombs [8], locating underground gas leaks [9], and marine surveys such as finding 30

hydrothermal vents [10], etc. 31

Locating an unknown odor source requires an effective OSL algorithm guiding the 32

robot based on sensor observations. Current OSL algorithms include bio-inspired methods 33

that imitate animal olfactory behaviors, engineering-based methods that rely on mathe- 34

matical models to estimate potential odor source locations and machine learning-based 35

methods that use a trained model to guide the robot toward the odor source. The typical 36
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bio-inspired method includes moth-inspired algorithm that imitates male months mate- 37

seeking behaviors [11], where a robotic agent will follow a ‘surge/casting’ model [12] 38

to reach the odor source. Typical engineering-based methods includes the Particle Filter 39

algorithm [13], where the robot will use historic olfaction reading to predict the odor source 40

location. Finally, typical machine learning-based OSL methods include deep supervised 41

and reinforcement learning-based methods. 42

All of these approaches rely on olfaction (e.g., chemical and airflow) sensing to detect 43

and navigate to the given odor source. However, approaches that rely solely on olfaction 44

sensing struggle in turbulent airflow environments. In contrast, animals that operate in 45

complex airflow environments often rely on multiple sensory systems like olfaction and 46

vision for odor source localization. For example, humans often recognize the presence of an 47

odor source of interest with olfaction (e.g., smelling a barbecue), and locate and navigate to 48

the odor source using vision (e.g., locating the barbecue shop with vision). If there is no 49

valid vision of the odor source, we may search for the source using olfaction sensing (e.g., 50

moving towards the direction of greater odor concentration or against the direction of wind 51

flow). Similarly, a robot with both olfaction and vision sensing capabilities (e.g., with a 52

camera and chemical sensor) can find an unknown odor source more efficiently, compared 53

to olfaction-only OSL navigation methods. Thus, this project departs from the existing OSL 54

navigation methods in utilizing both robotic vision and olfaction for searching the odor 55

source location. The core of this project involves designing an algorithm that utilizes both 56

vision and olfaction sensing for locating an unknown odor source location. 57

Figure 1. Flow diagram of the proposed method for OSL experiment. We utilized the Turtlebot3 robot
platform. We equipped it with a camera, Laser Distance Sensor, Airflow sensor, Chemical sensor, etc.
The robot utilizes 3 navigation behaviors - Obstacle-avoid Navigation, Vision-based Navigation, and
Olfaction-based Navigation to output robot heading and linear velocity.

The project proposes an effective sensor fusion approach that utilizes a vision method 58

and bio-mimicking olfaction method to guide the robot toward an unknown odor source in 59

a real-world obstacle-ridden search area with both laminar and turbulent airflow setups. 60

Figure 1 shows the proposed method, where we show the developed robot platform 61

equipped with vision and olfaction sensors. The vision sensors include a camera, and the 62

olfaction sensors include a chemical detector and anemometer. It also includes a Laser 63

Distance Sensor (LDS) for obstacle detection. The sensor observations are transmitted 64

to a decision-making model, which is implemented in a remote computer. The model 65

selects Obstacle-avoid Navigation, Vision-based Navigation, or Olfaction-based Navigation 66

behavior based on the sensor readings. In the proposed decision-making model, the robotic 67

vision is achieved by a deep-learning vision model, and the robotic olfaction model is 68

based on a bio-mimicking moth-inspired algorithm. Based on the current sensor reading, 69

the active search behavior will calculate the robot heading commands, guiding the robot 70

to approach the odor source location. Finally, the robot executes the heading command, 71

collects new sensor readings at the new location, and repeats the loop until the odor source 72

is detected. 73

In order to test the performance of our proposed Vision and Olfaction Fusion Nav- 74

igation algorithm, we conducted 30 real-world OSL experiments using Olfaction-only 75
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Navigation algorithm, Vision-only Navigation Algorithm, and the proposed Vision and Ol- 76

faction Fusion Navigation algorithms in both laminar and turbulent airflow environments. 77

Contributions of this work can be summarized as: 78

1. Introduce vision as an additional sensing modality for odor source localization. For 79

vision sensing, We trained a deep-learning-based computer vision model to detect 80

odor sources from emitted visible plumes. 81

2. Develop a multimodal Vision and Olfaction Fusion Navigation algorithm with Obstacle- 82

avoid Navigation capabilities for OSL tasks. 83

3. Compare the search performance of Olfaction-only and Vision-only navigation al- 84

gorithms with the proposed Vision and Olfaction Fusion Navigation algorithm in a 85

real-world search environment with obstacles and turbulent airflow setups. 86

In the remaining of this paper, Section 2 reviews the recent progress of olfactory-based 87

navigation algorithms; Section 3 reviews technical details of the proposed OSL algorithm; 88

Section 4 presents details of performing the real-world experiments; Section 5 includes 89

a discussion on the future research direction based on this work; and finally, Section 6 90

includes overall conclusion of the work. 91

2. Related Works 92

Research on Robotic Odor Source Localization (OSL) has gained significant attention in 93

recent decades [14]. Technological advancements in robotics and autonomous systems have 94

made it possible to deploy mobile robots for locating odor or chemical sources. Designing 95

algorithms that mimic the navigation method of biological organisms is a typical approach 96

in robotic odor source localization research. Organisms across various sizes rely on scent 97

for locating objects. Whether it’s a bacterium navigating an amino acid gradient or a wolf 98

tracking down prey, the ability to follow odors can be crucial for survival. 99

Chemotaxis is the simplest odor source localization approach in biological organisms, 100

where they rely only on olfaction for navigation. For example, bacteria exhibit chemotaxis 101

by adjusting their movement in response to changes in chemical concentration. When they 102

encounter higher levels of an appealing chemical, their likelihood of making temporary 103

turns decreases, promoting straighter movement. Conversely, in the absence of a gradient 104

or when moving away from higher concentrations, the default turning probability is 105

maintained [15]. This simple algorithm enables single-celled organisms to navigate along 106

a gradient of attractive chemicals through a guided random walk. Nematodes [16] and 107

crustaceans [17] also, follow Chemotaxis-based odor source localization. Early attempts at 108

robotic OSL focused on employing such simple gradient following chemotaxis algorithms. 109

These methods utilized a pair of chemical sensors on plume-tracing robots, directing them 110

to steer towards higher concentration measurements [18]. Several early studies [19–22] 111

validated the effectiveness of chemotaxis in laminar flow environments, characterized by 112

low Reynolds numbers. However, in turbulent flow environments with high Reynolds 113

numbers, alternative methods were proposed, drawing inspiration from both complex 114

biological and engineering principles. 115

Odor-gated anemotaxis navigation is a more complex odor source localization method 116

that utilizes senses of both odor and airflow for navigation. Moths [23–25], birds [26, 117

27], etc. organisms follow this type of navigation. In particular, mimicking the mate- 118

seeking behavior of male moths led to the development of the moth-inspired method in 119

robotic odor source localization. This method was successfully applied in various robotic 120

OSL scenarios [28] .Additionally, diverse bio-inspired search strategies like zigzag, spiral, 121

fuzzy-inference, and multi-phase exploratory approaches have been introduced [29] in 122

odor-gate anemotaxis-based solutions. Recent bio-inspired OSL navigation methods also 123

aimed to make the search environment more complicated. For instance, [30] proposed a 124

3-dimensional (3-D) moth-inspired OSL search strategy that utilized cross-wind Lévy Walk, 125

spiraling and upwind surge. 126

Engineering-based methods take a different approach than bio-mimicking algorithms, 127

relying on mathematical models for estimating odor source locations. These methods are 128
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often times known as Infotaxis [31]. These methods involve constructing source probability 129

maps, dividing the search area into regions, and assigning probabilities indicating the 130

likelihood of containing the odor source. Algorithms for constructing such maps include 131

Bayesian inference, particle filters , stochastic mapping [32], source term estimation [33], 132

information-based search [34], partially observable Markov decision processes [35], etc. 133

Subsequently, robots are guided towards the estimated source via path planning algorithms 134

such as artificial potential fields, A-star [36,37]. These models also rely on olfaction sensing 135

for estimating the odor source. 136

Deep Learning (DL) based methods are increasingly utilized for OSL experiments. 137

Recent developments involve the use of Deep Neural Networks (DNNs) to predict gas leak 138

locations from stationary sensor networks or employing reinforcement learning for plume 139

tracing strategies. For instance, Kim et al. [38] trained an RNN to predict potential odor 140

source locations using data from stationary sensor networks obtained through simulation. 141

Hu et al. [39] presented a plume tracing algorithm based on model-free reinforcement 142

learning, utilizing the deterministic policy gradient to train an actor-critic network for 143

Autonomous Underwater Vehicle (AUV) navigation. Wang et al. [40] trained an adaptive 144

neuro-fuzzy inference system (ANFIS) to solve the OSL problem in simulations, yet real- 145

world validations are necessary to confirm its efficacy. In summary, despite the promising 146

potential of DL technologies, their application in solving OSL problems is still in its early 147

stages and warrants further research. Most DL-based methods are validated in virtual 148

environments through simulated flow fields and plume distributions, necessitating real- 149

world implementations to validate their effectiveness. 150

Fusing vision with olfaction for odor source localization task is common in complex 151

organisms like mice [41,42]. Humans also use vision as a primary sensor for odor source 152

navigation tasks. However, very few works have utilized vision for OSL tasks. Recent 153

advances in computer vision techniques can allow robots to use vision as an important 154

sensing capability for detecting visible odor sources or plumes. The added advantage of 155

vision is that it can allow robots to navigate to odor sources without being affected by 156

sparse odor plumes or turbulent airflow in the navigation path. The main contribution of 157

this paper is designing a dynamic Vision and Olfaction Fusion Navigation algorithm for 158

odor source localization in an obstacle-ridden turbulent airflow environment. 159

3. Materials and Methods 160

3.1. Overview of the Proposed OSL Algorithm 161

Figure 2 shows the flow diagram of the proposed navigation algorithm. In this work, 162

the initial robot search behavior is the ‘Crosswind maneuver’ behavior, where the robot 163

moves cross-wind to detect initial odor plumes. If the robot encounters obstacles in its 164

surroundings, it switches to the ‘Obstacle-avoid Navigation’ behavior, where the robot 165

will move around to avoid obstacles. During the robot maneuver, the robot seeks valid 166

visual and olfactory detection. If the robot obtains a valid visual detection, it employs 167

Vision-based Navigation to approach the odor source location. Similarly, if the robot obtains 168

sufficient olfactory detection, it employs Olfaction-based Navigation algorithm. If the robot 169

is in the vicinity of the odor source, it is considered as the source declaration, i.e., the end 170

of the search. Otherwise, the robot returns to the default ‘Crosswind maneuver’ behavior 171

and repeats the above process. 172

In the following section, we present the design of the aforementioned search behav- 173

iors, including Crosswind maneuver (Subsection 3.2), Obstacle-avoid Navigation (Sub- 174

section 3.3), Vision-based Navigation (Subsection 3.4), and Olfactory-based Navigation 175

(Subsection 3.5). 176

3.2. Crosswind maneuver Behavior 177

In an OSL task, the robot does not have any prior information on the odor source 178

location. Thus, we define a ‘Crosswind maneuver’ behavior, as the default behavior, 179

directing the robot to find initial odor plume detection or re-detect odor plumes when 180
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Figure 2. The flow diagram of the proposed OSL algorithm. There are four navigation behav-
iors, including ‘Crosswind maneuver’, ‘Obstacle-avoid Navigation’, ‘Vision-based Navigation’, and
‘Olfaction-based Navigation’.

valid vision and olfaction observations are absent. Crosswind movement, where the robot 181

heading is perpendicular to the wind direction, increases the chance of the robot detecting 182

odor plumes [43]. Denote that the wind direction in the inertial frame is ϕ, thus, the robot 183

heading command in the ‘Crosswind maneuver’ behavior can be defined as: 184

ψc = ϕInertial + 90. (1)

Besides, it is worth mentioning that we set the robot’s linear speed as a constant and only 185

changed the heading commands in the ‘Crosswind maneuver’ behavior to simplify the 186

robot control problem and save search time. 187

3.3. Obstacle-avoid Navigation Behavior 188

The ‘Obstacle-avoid Navigation’ behavior is activated when the robot moves close to 189

an obstacle object within the search environment, which directs the robot to move around 190

and avoid the obstacles. In this work, the robot employs a Laser Distance Sensor (LDS) 191

to measure the distances from the robot to any obstacles in five surrounding angles as 192

presented in Figure 3. Specifically, we denote laser[x] as the measured distance at angle x, 193

including Front (laser[0]), Slightly Left, (laser[45]), Slightly Right (laser[315]), Left (laser[90]), 194

and Right (laser[270]). If the obstacle distance in any of the five angles is less than the 195

threshold, the proposed ‘Obstacle-avoid Navigation’ behavior is activated. 196

Algorithm 1 shows the pseudo-code for the ’Obstacle-avoid Navigation’ behavior. The 197

main idea is to identify the relative location of obstacles to the robot and command the robot 198

to move around to avoid obstacles. Specifically, the robot initially set the linear velocity and 199

angular velocity as vc and ωc, respectively. Positive values in vc and ωc represent forward 200

and left rotation, respectively, and negative values represent backward and right rotation, 201

respectively. Initial values of vc and ωc are set as 0.6 m/s and 0 rad/s in this work. 202
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Algorithm 1 ’Obstacle-avoid Navigation’ Behavior

1: Set robot linear velocity as vc = 0.6 m/s
2: Set robot angular velocity as ωc = 0 rad/s
3: if laser[0] > thr then
4: ωc = 0 rad/s
5: else
6: vc = 0 m/s and ωc = 0 rad/s
7: if (laser[45] > thr) ∨ (laser[315] > thr) then
8: if laser[45] > laser[315] then
9: ωc = 0.5 rad/s

10: else
11: ωc = −0.5 rad/s
12: end if
13: else if (laser[90] > thr) ∨ (laser[270] > thr) then
14: if laser[90] > laser[270] then
15: ωc = 0.5 rad/s
16: else
17: ωc = −0.5 rad/s
18: end if
19: else
20: vc = −0.5 m/s
21: end if
22: end if

Figure 3. Five directions in the robot’s laser distance sensing, including Left, Slightly Left, Front,
Slightly Right, and Right. laser[x] denotes the distance between the robot and the object at the angle
x, which is measured from the onboard laser distance sensor.

In the ‘Obstacle-avoid Navigation’ behavior, the robot will always check if there is 203

a clear path in the Front direction, i.e., laser[0] > thr (thr is the threshold for obstacle 204

detection, 0.75 m in this work), and if it is true, the robot will move forward with ωc = 0 205

rad/s. If the Front is blocked, the robot will stop and check Slightly Left or Slightly Right for 206

a clear path ((laser[45] > thr) ∨ (laser[315] > thr)). If there is a clear path in either of these 207

two directions, the robot will compare clearance in Slightly Left and Slightly Right and 208

rotate left (i.e., ωc = 0.5 rad/s) or right (i.e., ωc = −0.5 rad/s) to face the greater clearance. 209

If there is no clearance in Slight Left or Slight Right, the robot will check Left and Right for 210

a clear path ((laser[90] > thr) ∨ (laser[270] > thr)). If there is a clear path, the robot will 211

compare Left and Right clearance (laser[90] > laser[270]) and rotate left (ωc = 0.5 rad/s) 212

or right (ωc = −0.5 rad/s) to face the greater clearance. If there is no clear path in all five 213

directions, the robot will move back (vc = −0.5 m/s) to escape the dead end. 214

3.4. Vision-based Navigation 215

In this work, we employ vision as the main approach to detect odor sources within the 216

search environment. Vision sensing allows the robot to detect the plume source location 217

in its visual field and approach it directly. Olfaction-only navigation methods often rely 218

on airflow direction for navigating to the odor source. This can lead to failure in turbulent 219
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airflow environments. Given visual sensing is not guided by airflow direction, combining 220

it with Olfaction-based Navigation can allow the robot to find the odor source in turbulent 221

airflow environments. 222

The proposed Vision-based Navigation relies on computer vision techniques. Specifi- 223

cally, we train a deep learning-based object detection model, i.e., YOLOv7, to detect vapors 224

emitted from the odor source. Vapors can be considered as a common and distinct feature 225

for the odor source object, such as smoke for fire sources, chemical plumes for chemical 226

leaks or hydrothermal vents, etc. It should be mentioned that if the odor source does not 227

have a distinct plume feature (i.e., transparent vapors), the robot can still find the odor 228

source using the proposed Olfaction-based Navigation algorithm. We also provided real- 229

world performance comparison between the Olfaction-based Navigation and the Vision 230

and Olfaction Fusion Navigation algorithms. 231

In the proposed vision sensing method, we trained a YOLOv7 model to detect odor 232

plumes in the continuously captured images. To generate training images, we extracted 233

243 observation frames with a resolution of 640 × 480 while the turtlebot was approaching 234

the odor plumes in a variety of angles and lighting conditions. Figure 4 shows two sample 235

frames used for training the vision model. This data was split into training, validation, and 236

testing datasets for training the model. Roboflow [44] was utilized as the annotation tool 237

for accurate bounding boxes and polygons delineation. 238

Figure 4. Two sample frames that include humidifier odor plumes in different lighting and spatial
conditions. The frames are sampled out of the total 243 frames used for training the vision model. All
of the frames were captured by the Turtlebot robot in the experiment area.

To assess YOLOv7 performance, diverse predefined augmentation techniques in 239

Roboflow were systematically applied to ‘Dataset-1’. These included rotation (-10° to 240

+10°), shear (±15° horizontally and vertically), hue adjustment (-25° to +25°), saturation 241

adjustment (-25% to +25%), brightness adjustment (-25% to +25%), exposure adjustment 242

(-25% to +25%), blur (up to 2.5px), and noise (up to 1% of pixels). Post-augmentation, 243

the resulting augmented dataset, labeled as ‘Dataset-3’, enriched the training set for a 244

comprehensive evaluation of YOLOv7’s robustness in detecting prescribed odor plumes. 245

We set the number of training epochs to 100, with a batch size of 16. The resulting training 246

accuracy was 98% and testing accuracy was 93%. 247

The implemented vision model returns a box bounding the plume in the image if it 248

detects an odor plume. The output of the model also includes the horizontal and vertical 249

location of the plume bounding box. If the model returns a plume bounding box, the robot 250

continues moving forward (i.e., vc = 0.5 m/s) and checks if the horizontal location of the 251

bounding box is in the left or the right half of the image. The model requires less than 1 252

second to generate output in our remote computer. The robot sends 30 image frames per 253

second, and the robot picks every 30th frame as the input to the vision model. 254

Equation 2 calculates robot’s heading - 255

ωc =

1 0.5 m/s if c <
w
2

2 −0.5 m/s if c >
w
2

,
(2)
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where c is the horizontal mid-point of the bounding box, and w is the horizontal 256

resolution of the captured image. If the bounding box is in the left half of the image (i.e., 257

c <
w
2

), the robot rotates left (i.e., ωc = 0.5 rad/s) to face the plume. Otherwise, it rotates 258

right (ωc = −0.5 rad/s) to face the plume. 259

3.5. Olfaction-based Navigation 260

If there is no valid visual detection but the robot can sense above-threshold odor 261

concentration, Olfaction-based Navigation is employed to guide the robot to approach the 262

odor source location. 263

Specifically, the proposed Olfaction-based Navigation algorithm commands the robot 264

to move upwind to approach the odor source location. This behavior is analogous to the 265

’Surge’ behavior of the bio-mimicking moth-inspired navigation OSL algorithm [45]. In this 266

behavior, the robot’s linear velocity is fixed at vc = 0.6 m/s and the heading command, i.e., 267

ψc, is calculated as: 268

ψc = ϕInertial + 180. (3)

The robot will switch back to Vision-based Navigation once there is a valid vision detection. 269

3.6. Source Declaration 270

The robot is considered as successful if the robot position is within 0.9 m of the odor 271

source location. But if the robot fails to reach the odor source within 200 seconds, the trial 272

run is considered as a failure. 273

4. Experiment Results 274

4.1. Search Area 275

Figure 5. The experiment setup. The Turtlebot3 waffle pi mobile robot is used in this work. In
addition to the camera and Laser Distance sensor, the robot is equipped with a chemical sensor and
an anemometer for measuring chemical concentration, wind speeds, and directions. The robot is
initially placed in a downwind area with the object of finding the odor source. A humidifier loaded
with ethanol is employed to generate odor plumes. Two electric fans are placed perpendicularly to
create artificial wind fields. Two obstacles are placed in the search area.

Figure 5 shows the 2-dimensional 8.2m × 3.3m search area. Two obstacles were placed 276

in the search area to simulate a complex real-world search environment. Ethanol vapor was 277

used as the odor source as it is not toxic. Ethanol is also commonly implemented in OSL 278

research [46]. A humidifier disperses ethanol vapor constantly as odor plume. To increase 279

odor propagation in the search area, an electric fan was placed behind the humidifier. An 280

additional fan was placed perpendicularly to the first fan to create a turbulent airflow 281
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environment. Using just Fan 1 creates a laminar airflow environment, and using both fans 282

creates a turbulent airflow environment in the search area. 283

4.2. Mobile Robot Configuration 284

Turtlebot3 mobile robot platform was used in this work. Its built-in sensors include 285

Raspberry Pi Camera, a 360-degree LiDAR sensor for sensing and a DYNAMIXEL diver 286

for navigation. The onboard OpenCR controller allows the Turtlebot3 to be paired with 287

additional sensors for increasing its functionalities. 288

Table 1. Type, name, and specification of the built-in camera, laser distance sensor, and added
anemometer, chemical sensor.

Source Sensor Type Module Name Specification

Built-in

Camera Raspberry pi
camera v2

Video Capture:
1080p30, 720p60

and VGA90.

Laser Distance
Sensor

LDS-02
Detection Range:

360-degree.
Distance Range:
160 ∼8,000 mm.

Added

Anemometer WindSonic,
Gill Inc.

Speed: 0-75m/s.
Wind direction:
0-360 degrees.

Chemical
Sensor

MQ3 alcohol
detector

Concentration:
25 – 500 ppm.

Table 1 shows the built-in and added sensors for OSL experiments. Raspberry Pi 289

Camera V2 was used for image capture, LDS-02 Laser Distance Sensor was used for 290

obstacle detection, WindSonic Anemometer was used for wind speed and wind direction 291

measurements in the body frame, and MQ3 alcohol detector was used for detecting chemical 292

plume concentration. 293

Figure 6. System configuration. This system contains two main components, including the Turtle-
bot3 and the remote PC. The solid connection line represents physical connection, and the dotted
connection line represents wireless link.

Turtlebot3 has Raspberry Pi 4 as the CPU which has limited computing power. It 294

utilizes Ubuntu and Robot Operating System (ROS). Ubuntu allows connection capabilities 295

with a remote computer. ROS allows custom programs in the remote computer to subscribe 296

to specific sensor readings from the robot and publish heading commands back to the 297

robot in real-time. ROS supports both Python and C++ programming languages. Figure 6 298
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presents the proposed system configuration for the robotic system, which includes a robotic 299

agent, i.e., Turtlebot3, onboard controller, and a ground station, i.e., a remote Personal 300

Computer (PC). For this study, Ubuntu 20.04 and ROS Noetic were installed in both the 301

robot and the paired remote computer for controlling the robot. A local area network was 302

used to connect the robot to the remote PC. 303

4.3. Experiment Design 304

(1) (2)

Figure 7. (1) The flow diagram of the Olfaction-only navigation algorithm. There are three navigation
behaviors, including ‘Crosswind maneuver’, ‘Obstacle-avoid Navigation’, and ‘Olfaction-based
Navigation’. (2) The flow diagram of the Vision-only navigation algorithm. There are three naviga-
tion behaviors, including ‘Crosswind maneuver’, ‘Obstacle-avoid Navigation’, and ‘Vision-based
Navigation’.

To determine the effectiveness of the proposed Vision and Olfaction Fusion Navigation 305

algorithm, we tested the performance of Olfaction-only navigation and Vision-only naviga- 306

tion algorithms. Figure 7 shows the flow diagram of the two navigation algorithms. In 307

the Olfaction-only navigation algorithm, the robot used the Crosswind maneuver behavior 308

(Section 3.2), Obstacle-avoid Navigation behavior (Section 3.3), and Olfaction-based Navi- 309

gation behavior (Section 3.5). In the absence of sufficient chemical concentration, the robot 310

followed Crosswind maneuver behavior to maximize the chance of detecting sufficient 311

plume concentration. If there were obstacles in the robot’s path, it follows Obstacle-avoid 312

Navigation behavior to circumvent the obstacles. If sufficient odor concentration is de- 313

tected, and there are no obstacles in the robot’s path, it follows Olfaction-based Navigation 314

behavior to reach the odor source. 315

In the Vision-only navigation algorithm, the robot used the Crosswind maneuver 316

behavior (Section 3.2), Obstacle-avoid Navigation behavior (Section 3.3), and Vision-based 317

Navigation behavior (Section 3.4). In the absence of valid plume vision, the robot followed 318

Crosswind maneuver behavior to maximize the chance of detecting valid plume vision. 319

If there were obstacles in the robot’s path, it follows Obstacle-avoid Navigation behavior 320

to circumvent the obstacles. If the robot detects a valid plume visual, and there are no 321

obstacles in the robot’s path, it follows Vision-based Navigation behavior to reach the odor 322

source. 323
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These three algorithms were tested in two airflow environments, including the e1 - 324

laminar airflow environment that used one electric fan and the e2 - turbulent airflow envi- 325

ronment that used two perpendicularly placed electric fans. Thus, a total of six experiments 326

setups were designed, i.e., three navigation methods in two airflow environments, to test 327

the effectiveness of the proposed fusion model. Five experiment runs were conducted for 328

each of the six experiment setups, totaling 30 trial runs. We used the same five starting 329

positions to initialize the test runs. Figure 8 shows the five starting positions and the two 330

airflow setups for the experiment runs. 331

(1) e1 (2) e2

Figure 8. (1) The schematic diagram of the search area with e1 - laminar airflow setup. The five robot
starting positions are used for testing the performance of the Olfaction-based Navigation, Vision-
based Navigation, and Vision and Olfaction Fusion Navigation tests. (2) The schematic diagram of
the search area with e2 - turbulent airflow setup.

4.4. Sample Trials 332

Figure 9. Robot trajectory graphs and snapshots of OSL tests with the Vision and Olfaction Fusion
Navigation algorithm in turbulent airflow environment.

Figure 9 shows the robot trajectory and snapshots of the Vision and Olfaction Fusion 333

Navigation trial run in a turbulent airflow environment. In this run, the robot initialized 334

at t=1 s, found sufficient chemical concentration, and started following Olfaction-based 335

Navigation. At t=22 s, the robot detected valid visual detection of the odor plumes and 336

started to follow Vision-based Navigation. At t=49 s the robot faced the second obstacle and 337
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started to follow Obstacle-avoid Navigation behavior. It avoided the obstacle, re-detected 338

plume vision, and started to follow Vision-based Navigation until it reached the odor 339

source at t=72 s. 340

4.5. Experiment Trials 341

Table 2. Search Time of the Vision-only, Olfaction-only, and the Proposed Vision and Olfaction Fusion
Navigation Algorithms.

Robot Initial
Position (x, y),

Orientation (z, w)

Olfaction-only
Navigation

Algorithm (s)

Vision-only
Navigation

Algorithm (s)

Vision and Olfaction
Fusion Navigation

Algorithm (s)

Laminar
Airflow

Env.

(-2.9, 1.5),
(-0.6, 1.0)

63.1 - 63.9

(-3.1, 0.5),
(0.0, 35.0)

71.3 149.3 69.9

(-2.6, -0.4),
(0.7, 0.7)

74.3 - 67.5

(-2.0, 0.6),
(1.0, -0.1)

73.8 - 75.7

(-1.8, 0.7),
(0.0, 0.1)

59.1 - 61.1

Turbulent
Airflow

Env.

(-2.9, 1.5),
(-0.6, 1.0)

- - 64.0

(-3.1, 0.5),
(0.0, 35.0)

- - 113.1

(-2.6, -0.4),
(0.7, 0.7)

196.4 - 130.7

(-2.0, 0.6),
(1.0, -0.1)

- 102.8 131.9

(-1.8, 0.7),
(0.0, 0.1)

72.3 - 68.5

Table 2 shows the run times of the 30 trial runs, i.e., five trial runs using one of 342

three navigation algorithms in two airflow environments. Figure 10 shows the robot 343

trajectories in those 30 trial runs. Olfaction-only navigation algorithm uses airflow direction 344

to navigate toward the odor source. It performed well in laminar airflow environments - 345

the robot followed relatively direct airflow towards the odor source. However, in turbulent 346

airflow environments, the robot got diverted by the complex airflow directions and often 347

failed to reach the odor source by the designated time limit. Vision-based Navigation 348

performed poorly in both laminar and turbulent airflow environments. Because of the 349

obstacle placement, the robot had no visual of the plume from the starting position. It 350

needed to follow the Crosswind maneuver and Obstacle-avoid Navigation behaviors until 351

it had a valid plume vision. In most runs, the robot’s 200-second time limit was over before 352

it could find and navigate to the odor source. Vision and Olfaction Fusion Navigation 353

algorithm test runs were consistently successful in both laminar and turbulent airflow 354

environments. The Crosswind maneuver and Olfaction-based Navigation led the robot 355

toward the odor source which allowed the robot to detect plume vision. Once it started to 356

follow Vision-based Navigation, the robot was not affected by turbulent airflow. 357
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(1) e1o1 (2) e1o2 (3) e1o3 (4) e1o4 (5) e1o5 (6) e2o1 (7) e2o2 (8) e2o3 (9) e2o4 (10) e2o5

(11) e1v1 (12) e1v2 (13) e1v3 (14) e1v4 (15) e1v5 (16) e2v1 (17) e2v2 (18) e2v3 (19) e2v4 (20) e2v5

(21) e1vo1 (22) e1vo2 (23) e1vo3 (24) e1vo4 (25) e1vo5 (26) e2vo1 (27) e2vo2 (28) e2vo3 (29) e2vo4 (30) e2vo5

Figure 10. Trajectories of OSL repeat experiments. Olfaction-only Navigation algorithm trials (o1-o5)
in - (1-5) laminar airflow environment (e1), and (6-10) turbulent airflow environment (e2). Similarly,
Vision-only Navigation algorithm trials (v1-v5) in e1 (11-15) and e2 (16-20), Vision and Olfaction
Fusion Navigation algorithm trials (vo1-vo5) in - e1 (21-25) and e2 (26-30). The behaviors that the
robot was following under the three navigation algorithms are Crosswind - crosswind maneuver
behavior, Obstacle - Obstacle-avoid Navigation behavior, Olfaction - Olfaction-based Navigation
behavior, and Vision - Vision-based Navigation behavior. Robot starting positions are highlighted
with a blue star, the obstacles are the orange boxes, and the odor source is the red point with the
surrounding circular source declaration region.

4.6. Statistic Analysis 358

Table 3. Result Statistics, i.e., Success Rate and Average Search Time of Vision-based Navigation,
Olfaction-based Navigation, and the Proposed Vision and Olfaction Fusion Navigation Algorithms.

Airflow
Environment

Navigation
Algorithm

Success
Rate

Avg. Search
Time (s)

Avg. Travelled
Distance (m)

Laminar
Olfaction-only 5/5 68.3 6.1

Vision-only 1/5 189.9 11.7
Vision and

Olfaction Fusion
5/5 67.6 6.2

Turbulent
Olfaction-only 2/5 173.7 9.7

Vision-only 1/5 180.6 13.7
Vision and

Olfaction Fusion
5/5 101.6 7.8

Combined
Olfaction-only 7/10 121.0 7.9

Vision-only 2/10 185.2 12.7
Vision-Olfaction

Fusion
10/10 84.6 7.0
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(1) e1o (2) e1v (3) e1vo

(4) e2o (5) e2v (6) e2vo

Figure 11. Robot trajectories of repeated tests in six navigation algorithm and airflow environment
combinations. Trajectories in laminar airflow environments are - (1) e10 - Olfaction-only navigation
algorithm, (2) e1v - Vision-only navigation algorithm, and (3) e1vo - Vision and Olfaction Fusion
Navigation algorithm. Trajectories in turbulent airflow environment are - (4) e20 - Olfaction-only
navigation algorithm, (5) e2v - Vision-only navigation algorithm, (6) e2vo - Vision and Olfaction
Fusion Navigation algorithm. The behaviors that the robot was following under the three navigation
algorithms are shown in the trajectory. These behaviors include Crosswind - crosswind maneuver
behavior, Obstacle - Obstacle-avoid Navigation behavior, Olfaction - Olfaction-based Navigation
behavior, and Vision - Vision-based Navigation behavior. Five robot starting positions are highlighted
with a blue star, the obstacles are the orange boxes, and the odor source is the red point with the
surrounding circular source declaration region.

Figure 11 shows the combined robot trajectories of the three navigation algorithms 359

in the two airflow environments. Table 3 summarizes the repeated test results in terms of 360

success rate, averaged search time, and average traveled distance. For failed experiment 361

runs, 200 s was used for calculating the Average Search Time (s). We can observe from 362

the results that the proposed Vision and Olfaction Fusion Navigation algorithm has the 363

highest success rate, the lowest average search time, and the lowest average distance 364

traveled among the three methods. This is critical in real-world odor source localization 365

applications, as we want the robot to find odor sources as quickly as possible. 366



Version February 22, 2024 submitted to Sensors 15 of 18

5. Future Research Direction 367

A number of improvements can be made to the proposed OSL algorithm in the future. 368

Firstly, the proposed navigation algorithm follows a homogeneous crosswind maneuver 369

behavior for finding odor plumes. The search behavior doesn’t take into account past vision 370

or olfaction sensing history. Similarly, the moth-inspired algorithm used in this paper only 371

uses current olfaction readings for finding the odor source. Whereas engineering-based 372

solutions like the Particle Filter utilize past sensor readings for estimating the odor source 373

and plume location. Thus, future research scope includes pairing engineering-based 374

Olfaction navigation with Vision-based Navigation for improved crosswind maneuver and 375

Olfaction-based Navigation. The implemented Obstacle-avoid Navigation algorithm in 376

this paper also relies only on the current laser readings to sense and circumvent obstacles. 377

In this case, reactive path planning algorithms include Fuzzy Logic, Neural Networks, 378

bug algorithms, etc. [47] can be adopted for more efficient Obstacle-avoid Navigation 379

behavior. Additionally, the future scope of this robot platform includes using machine 380

learning algorithms for calculating robot headings. For instance, the reinforcement learning 381

(RL) [48] and supervised learning [49] methods can be used for olfactory-based navigation 382

in robots. Transformer-based Vision-Language and Vision-Language-Action (VLA) models 383

are gaining traction as a prevalent approach in robotics. Recent applications of such a 384

model include the PaLM-E model [50], and the RT-2 [51]. Exploring the possibilities of 385

the Vision-Language models as the primary decision-maker for multi-modal odor source 386

localization is another exciting possibility in OSL research. 387

6. Conclusion 388

The combination of computer vision and robotic olfaction provides a more comprehen- 389

sive observation of the environment, enabling the robot to interact with the environment in 390

more ways and enhancing navigation performance. This paper proposes the incorporation 391

of vision sensing in OSL. Specifically, the paper proposes a Vision and Olfaction Fusion 392

Navigation algorithm with Obstacle-avoid Navigation capability for 2-D odor source local- 393

ization tasks for ground mobile robots. For conducting real-world experiments to test the 394

proposed algorithm, a robot platform based on the Turtlebot3 mobile robot was developed 395

with olfaction and vision-sensing capabilities. The proposed navigation algorithm had 396

five behaviors, i.e., Crosswind maneuver behavior to find odor plume, Obstacle-avoid 397

Navigation behavior to circumvent obstacles in the environment, Vision-based Navigation 398

to approach the odor source using vision sensing, Olfaction-based Navigation to approach 399

the odor source using olfaction sensing, and source declaration. For the Vision-based 400

Navigation behavior, a YOLOv7-based vision model was trained to detect visible odor 401

plumes. For Olfaction-based Navigation behavior, we used moth-inspired algorithm. To 402

test the performance of the proposed Vision and Olfaction Fusion Navigation algorithm, we 403

tested the performance of the Olfaction-only navigation algorithm, Vision-only navigation 404

algorithm, and the proposed Vision and Olfaction Fusion Navigation algorithm separately 405

in real-world experiment setups. Furthermore, we tested the performance of the three 406

navigation algorithms in laminar and turbulent airflow environments to compare their 407

strengths. We used five predefined starting robot positions for each navigation algorithm 408

and repeated them for both airflow environments - resulting in 30 total experiment runs. 409

The search results of the OSL experiments show that the proposed Vision and Olfaction 410

Fusion Navigation algorithm had a higher success rate, lower average search time, and 411

lower average traveled distance for finding the odor source compared to Olfaction-only and 412

Vision-only navigation algorithms in both laminar and turbulent airflow environments. The 413

result of our experiment indicates that vision sensing is a promising addition to olfaction 414

sensing in ground-mobile robot-based Odor Source Localization research. 415
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