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Abstract—Autonomous odor source localization (OSL) has
been viewed as a challenging task due to the nature of turbulent
airflows and the resulting odor plume characteristics. Here
we present an olfactory-based navigation algorithm via deep
learning (DL) methods, which navigates a mobile robot to find
an odor source without explicating specific search algorithms.
Two types of deep neural networks (DNNs), namely traditional
feedforward and convolutional neural networks (FNN and CNN),
are proposed to generate robot velocity commands on x and
y directions based on onboard sensor measurements. Training
data is obtained by applying the traditional olfactory-based
navigation algorithms, including moth-inspired and Bayesian-
inference methods, in thousands of simulated OSL trials. After
the supervised training, DNN models are validated in OSL tests
with varying search conditions. Experiment results show that
given the same training data, CNN is more effective than FNN,
and by training with a fused data set, the proposed CNN achieves
a comparable search performance with the Bayesian-inference
method while requires less computational time.

Index Terms—Olfactory-based navigation algorithms, odor
source localization, end-to-end deep learning.

I. INTRODUCTION

Olfaction is an important sensing ability widely used by
animals to perform life-essential activities, such as homing,
foraging, mate-seeking, and evading predators. Inspired by
animals’ olfactory behaviors, a mobile robot or an autonomous
vehicle, equipped with odor-detection sensors, could locate an
odor source in an unknown environment. The technology of
employing robots to find odor sources is referred to as odor
source localization (OSL) [1]. Some practical OSL applica-
tions include monitoring air pollution [2], locating chemical
gas leaks [3], finding unexploded mines and bombs [4], and
marine surveys such as locating underwater hydrothermal
vents [5].

An effective olfactory-based navigation algorithm is critical
for an OSL problem. Like image-based navigation algorithms,
which extract the information from images as the reference to
navigate a robot, olfactory-based navigation algorithms detect
odor plumes as cues to guide a robot toward an odor source.
During the plume tracing process, estimating plume locations
is the main challenge since the plume propagation is not only
related to the molecular diffusion that takes plumes away from
the odor source but also the advection of airflow [6]. In laminar

flow environments, plume dispersal is a steady and stable
process, which results in a spatially coherent trajectory. In
this scenario, the intuitive chemotaxis [7] navigation method,
which commands the robot to trace plumes by following
the odor concentration gradient, is applicable. However, this
method fails in turbulent flow environments, where plumes are
stretched and twisted to form an intermittent plume trajectory.

Alternatively, two other categories of olfactory-based nav-
igation methods, namely bio-inspired and engineering-based
(i.e., probabilistic) methods, are proposed. Bio-inspired meth-
ods direct a plume-tracing robot to mimic animal olfac-
tory behaviors, such as the mate-seeking behaviors of male
moths, which could locate female moths over a long distance
via tracing emitted pheromones [8]. To complete this task,
a male moth adopts a ‘surge/casting’ behavior pattern: a
male moth flies upwind when it detects pheromones and
traverses the wind direction when pheromones are absent.
The ‘surge/casting’ model was successfully implemented on
an underwater OSL trial [9], which directs an autonomous
underwater vehicle to find a chemical source over a large
search area. Shigaki et al. [10] presented a time-varying moth-
inspired algorithm, where the duration of the ‘surge’ behavior
is precisely controlled by an experience formula obtained from
biological experiments.

By contrast, an engineering-based method utilizes mathe-
matical and physics approaches to deduce odor plume distribu-
tions and predict odor source locations. Constructing a source
probability map is a commonly-used approach to indicate
the possible odor source locations. Methods that produce a
source probability map includes Bayesian-inference method
[11], particle filter [12], hidden Markov model (HMM) [13],
fuzzy inference theory [14], source term estimation [15], and
partially observable Markov decision process (POMDP) [16].
After the source estimations are obtained, a path planning
algorithm, such as the artificial potential field (APF) [17]
and A-star [18] algorithms, is employed to produce a search
trajectory that guides a plume tracing robot moving toward the
estimated target. Besides, Vergassola et al. [19] presented the
‘infotaxis’ method, which employs the information entropy to
guide a plume tracing robot searching for an odor source.

Considering existing olfactory-based navigation methods,



the limitation of the bio-inspired methods is lacking the
ability to estimate odor plume locations. When the robot loses
plume contact, it can only conduct a time-consuming ’casting’
behavior to re-detect plumes (e.g., [9]). Moreover, this type
of methods usually fails in turbulent flow environments since
the patchy and rapidly changing plume trajectory impedes
the robot to constantly detect plumes. As for an engineering-
based method (e.g., [11]), the computational cost grows sig-
nificantly with respect to the size of the search area and the
resolution of the source probability map. The high compu-
tational requirement for loop updating source estimations in
every time step restrains its application on mobile robots,
which have limited computational capacity. Derived from these
considerations, a desired olfactory-based navigation algorithm
should be effective in different flow environments and light-
weighted in computational demands for implementing on
robotic platforms.

In this work, we attempt to solve the OSL problem via
deep learning (DL) approaches. The objective is to obtain a
DL model that achieves a desired search performance as the
engineering-based methods while requires less computational
demands like the bio-inspired methods. The core idea of DL is
letting the computer recognize the pattern of performing a task
by relying on data sets without providing explicit instructions
[20]. Various DL algorithms have demonstrated the powerful
ability to model complex dependencies, such as feature ex-
traction [21], medical diagnosis [22], and self-driving vehicles
[23]. There are many benefits for applying DL methods on
the OSL problem: 1) compared to complex engineering-
based navigation methods, the query time of DL models is
predictable and unaffected by search environments, which is
suitable for implementing on mobile robots; 2) DL models can
learn other successful navigation methods from demonstrations
without explicating the specific searching algorithm; 3) DL
models can continually improve the searching performance by
adding more search examples in training data sets. However,
this application’s challenge is to obtain sufficient training data
sets since OSL experiments are expensive to be repeatedly
performed in different search conditions.

In the field of DL-based OSL methods, limited work has
been carried. Recent developments include employing DL
models to predict the gas leaking locations from a stationary
sensor network and adopting reinforcement learning algo-
rithms to learn a plume tracing algorithm. Kim et al. [24]
trained a recurrent neural network (RNN) to predict possible
odor source locations via the data obtained from a station-
ary sensor network, where training data is acquired from a
simulation program. Hu et al. [25] presented a plume tracing
algorithm based on the model-free reinforcement learning
algorithms, where the deterministic policy gradient (DPG)
algorithm is employed to control an autonomous underwater
vehicle to search odor plumes and find the odor source. By
summarising these works, it can be discovered that despite the
high-level intelligence and potential benefits of DL technolo-
gies, using DL methods to solve an OSL problem is still in
its infancy and requires further research.

In this paper, the feasibility of implementing DL methods
on OSL problems is investigated. Specifically, two types
of deep neural networks (DNNs), namely feedforward and
convolutional neural networks (FNN and CNN), are employed
to guide a plume tracing robot in finding an odor source.
During the plume tracing process, DNNs produce suitable
robot commands based on onboard sensor measurements. Two
paradigms from categories of bio-inspired and engineering-
based methods, namely moth-inspired [26] and Bayesian-
inference [11] methods, are employed as expert methods to
generate training data sets in a realistic simulation program.
It should be mentioned that collecting training data from
real OSL trials is preferred, but considering the difficulty of
repeatedly performing actual OSL tests and the demand for a
large quantity of training data, utilizing a simulation program
is an acceptable option. After the supervised training, the
proposed DNNs are implemented in OSL tests with various
search conditions, where the success rate and the averaged
search time are calculated. To analyze the generalization error
of the trained DNN models, OSL tests are conducted in
previously unseen environments. Additionally, trained DNN
models are also compared with traditional navigation methods
to evaluate the validity of the proposed methods.

II. METHODOLOGY

A. Problem Formulation

The main objective of this work is to obtain a DNN model
that guides a plume tracing robot to locate an odor source in an
unknown environment. To achieve this goal, the DNN model
is trained to calculate suitable robot commands C based on
robot states S:

C = Fθ(S). (1)

This DNN model is parametrized by a parameter vector θ,
and the optimal θ is found during the process of supervised
training, which minimizes the difference between outputs of
the DNN and the ones demonstrated by expert methods.

B. Generate Training Data Sets

1) Defining Inputs and Outputs of DNNs: As mentioned,
two expert methods, namely moth-inspired and Bayesian-
inference methods, are employed to generate training data
sets. To learn expert methods, DNNs should be offered with
similar input information. In the moth-inspired method, odor
concentrations (ρ) and wind directions (φ) determine whether
the robot is in the ’surge’ or ’casting’ search phase, and for
the Bayesian-inference method, robot positions (x and y),
wind speeds (ux and uy), and algorithm running time (t) are
essential to estimate odor source locations. All aforementioned
variables should be included in DNN’s input state, therefore,
the input state vector S is defined as:

S = (t, ux, uy, ρ, x, y, vx, vy) (2)

where ux, uy , vx and vy are wind and robot speeds in x and
y directions, respectively. To control a mobile robot on a 2-D



TABLE I
DEFINITIONS OF VARIABLES

Symbols of
Variables

Definitions of
Variables

t (s) Algorithm running time
u (m/s) Wind speed at the robot position
φ (rad) Wind direction at the robot position
ρ (mmpv) Odor concentration at the robot position
x (m) Robot horizontal position
y (m) Robot vertical position
ψ (rad) Robot heading angle
v (m/s) Robot speed
vc (m/s) Robot speed command
ψc (rad) Robot heading command

mmpv: million molecules per cm3

plane, only speed and yaw angle commands (vc and ψc) are
needed. Thus, DNN’s outputs are defined as:

C = (vc,x, vc,y) (3)

where vc,x and vc,y are robot velocity commands on x and y
directions, respectively.

It should be mentioned that we convert angle-related vari-
ables, including wind directions (φ), robot yaw angles (ψ),
and yaw angle commands (ψc), to vector forms in S and C:{

ux = u cosφ, vx = v cosψ, vc,x = vc cosψc
uy = u sinφ, vy = v sinψ, vc,y = vc sinψc

. (4)

This is because angles do not make a good DL model input:
one angle could refer to two different values such as −π and
π, and angles should not matter if the corresponding speed
is zero. For the easy reference, Table I lists variables and
corresponding definitions in S and C.

2) The Simulated Search Environment: In this work, the
OSL is considered as a two-dimensional (2-D) problem since
the aimed robotic platform is a ground robot. A realistic OSL
simulation program designed based on [6] is employed as
the platform to produce training data sets. This simulator
emulates odor plume trajectories in a time-varying airflow
environment and robot motion behaviors in the search area.
Some other researchers, such as [27] and [28], also employed
this simulator as the environment to evaluate their works.

Fig. 1(a) presents the simulated search area (100×100 m2),
where a coordinate system (x − y) is constructed to indicate
positions. The plume trajectory is painted with a grey-scale
patchy trail, and local wind vectors are represented by arrows
in the background. Wind vectors are calculated by a mean flow,
U0, plus Gaussian white noises with zero mean and ς variance.
Thus, by adjusting values of U0 and ς , varying airflow fields
and the corresponding odor plume trajectories can be obtained.
To reduce the spatial correlation in training data sets, at the
beginning of an OSL trial, the odor source location is randomly
selected from four regions as indicated in Fig. 1(b).

In the simulation, a two-wheeled mobile robot, as presented
in Fig. 2, is employed as the robotic platform to implement
olfactory-based navigation algorithms. It is assumed that the
robot is equipped with sufficient sensors to measure variables

(a) (b)

Fig. 1. (a) The simulated search environment. (b) Possible odor source
locations, where for each OSL trial in training data sets, an odor source is
randomly selected from a position inside shadowed regions.

Fig. 2. The two-wheeled mobile robot used in the simulation program.
Definition of robot-related parameters are labeled in the diagram.

in the state vector S. The onboard sensor suite and the
corresponding functionalities are listed below:

• An onboard computer: implement navigation algorithms
and measure algorithm running time t;

• A chemical sensor: measure odor concentration ρ;
• An anemometer: measure wind speeds u and directions
φ in the inertial frame;

• A positioning sensor: measure robot positions (x, y) and
speeds v in the inertial frame;

• A compass: measure robot yaw angles ψ.
Comparing to the large scale of the search area, the size of
the robot is negligible. Thus, the robot is approximated as a
single point in the simulation.

3) Training Data Specifications: To collect training data,
around 6000 OSL trials are conducted for each expert method.
In an OSL trial, a data tuple γt = (St,Cexp,t) that consists
of input states St, which are obtained from robot sensor mea-
surements, and expert commands Cexp,t, which are produced
by the implemented expert method, is recorded at every time t
during the plume tracing process. An OSL trial is considered
as complete if the robot reaches the odor source location or
the algorithm running time is beyond the time limit, i.e., 400 s
in this work. It should be mentioned that we consider an odor
source has been found if the robot is in vicinity of it. In real-
world applications, this step, i.e., source declaration, could be
complete with aids of external sensors such as cameras, which
could recognize an odor source from a close distance.

Depending on the type of the expert method, two train-
ing data sets, namely MO-Train (obtained from the moth-
inspired method) and BA-Train (obtained from the Bayesian-
inference method), are acquired. Previous experiment data
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Fig. 3. (a) The structure of the proposed FNN. Labels inside a blue layer
represent the layer type, filter size, and activation function, respectively. A
dense layer indicates a fully-connected neural network; (b) MSEs of FNNs
with varying filter sizes and hidden layers on testing data sets

[29] reveals that bio-inspired methods are more efficient (i.e.,
require less searching time) in laminar flow environments
while engineering-based methods outperforms the counterpart
in turbulent flow environments in terms of the search success
rate. Thus, to learn benefits from two expert methods, two
training data sets are combined to form a fused data set, which
is named as FU-Train.

Only 80% of training data is used to train DNN models,
while 10% of the remaining data, termed testing data set, is
used to test DNN models after the training, and the last 10%
data, termed validation data set, is used to compute validation
errors during the training process: the training process is
terminated once the validation error is not improved in 20
episodes. The validation error is defined as mean absolute
errors (MAEs) in this work, i.e., 1/n ·

∑n
i=1 |Fθ(Si)−Ci,exp|

where n is the size of validation data set.

C. Design DNNs for OSL Problems

Two types of neural networks, i.e., FNN and CNN, are
selected for the representation of Fθ. The motivation for
choosing FNN is that we want to use a simple DNN structure
to investigate the viability of implementing DL approaches
on OSL problems. Besides, the intuitive FNN could also be
employed as the baseline to evaluate the performance of other
types of DNN models in the OSL problem. Fig. 3(a) presents
the structure of a FNN model. To determine the optimal
numbers of hidden layers and filter sizes, varying values are
investigated. Fig. 3(b) shows the mean square errors (MSEs)
of implementing different structure FNNs with varying hidden
layers and filter sizes on testing data sets. It can be observed
that larger models (i.e., more layers and filters on each layer)
achieve better performances (i.e., lower MSEs) but overfit
when the model is too complicated (i.e., the MSE increases).
Based on plots, the FNN with 8-layer and 512 filters is selected
for implementing in OSL tests.

Due to the characteristics of FNN structure, the sensor data
history (i.e., St−1, St−2, ...) is ignored in calculating FNN
outputs. In terms of learning expert methods, the FNN may
learn the moth-inspired method well since this expert method
does not consider history information as well. However, for
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Fig. 4. (a) The structure of the proposed CNN. Labels inside a yellow
layer represent layer type, filter size, kernel size, and activation function,
respectively. The Conv1D layer means a convolutional neural network. The
last ’Dense Layers’ block contain 3 consecutive dense layers with 512, 512,
and 2 filters, respectively; (b) MSEs of CNNs with the varying length of
recording history on testing data sets

the other expert method, i.e., Bayesian-inference method, the
sensor data history is the necessary information to estimate
the odor source location. To address this issue, a CNN
model is employed to process sensor data and produce robot
commands. As presented in Fig. 4(a), the proposed CNN not
only considers sensor data at the current time but also from
previous k time steps. Specifically, three convolution layers are
employed to extract features from sensor data history. Then,
the extracted features are fed to three dense layers to produce
robot commands. To find the optimal value of k, different
numbers are investigated. Fig. 4(b) shows MSEs of CNNs
with varying k on testing data sets. It can be observed that
MSE is lowest on all testing data sets when k = 6. Therefore,
we choose this CNN structure to implement in later OSL tests.

D. Training DNN Models

In this work, we employ the supervised learning [30]
as the training algorithm, which aims to find the optimal
parameter vector θ∗ that minimizes the loss function J . The
loss function J is defined as the mean square error between
DNN outputs Fθ(S) and expert demonstrations Cexp, which
can be represented as:

J (ΓB) =
1

NB
·
j+NB∑
i=j

(Fθ (Si)−Ci,exp)
2
, (5)

where ΓB is a mini-batch that contains NB (32 in our work)
samples from a training data set. The gradient of the cost
function with respect to model parameters is calculated using
the backpropagation algorithm [31], and the optimization al-
gorithm that updates model parameters is the Adam optimizer
[32].

To train FNNs, the order of training samples is randomized
to reduce the temporal correlation in training data sets. This
procedure is skipped in the process of training CNNs since
the proposed CNN produces robot commands based on time
series data. The training process is considered as complete if
one of the following two conditions is satisfied: 1) the training



epoch reaches the limit (i.e., 500 in implementations); 2) the
validation error does not improve in 20 consecutive epochs.
Google® TensorFlow [33] is employed as the framework to
construct and train DNN models. Training the proposed FNN
and CNN with the FU-Train data set (1.6 million data tuples)
on an Intel® i7-8750 CPU with the Nvidia® GeForce GTX
1070 GPU acceleration takes around 4 hours and 2 hours,
respectively.

III. EXPERIMENTS

A. Sample OSL Trials

To exam the effectiveness of DNN models after training,
we first implement the proposed FNN and CNN, trained with
the fused training data set (i.e., FU-Train), in sample OSL
trials, where the mean flow velocity of the environment is
U0 = (1, 0) m/s and the variance of Gaussian white noises is
ς = 3. The robot starts at (60,−40) m, and the odor source
is located at (20, 0) m.

Fig. 5 shows search trajectories of two expert methods
(i.e., moth-inspired and Bayesian-inference methods) and the
proposed DNN models (i.e., FNN and CNN) in the sample
OSL trial. In these plume tracing methods, the robot first
adopts a ’zigzag’ search strategy [26] to find the existence of
plumes, and after the first plume detection, the corresponding
navigation method is activated, which guides the robot to
trace plumes. In this laminar flow environment, the moth-
inspired method achieves a shorter search time compared to the
Bayesian-inference method (93 s vs 126 s). This is because
in a laminar flow environment, odor plumes form a stable
and continuous trajectory, in which the ’surge’ behavior of
the moth-inspired method is more effective to quickly trace
up-wind and locate the odor source compared to engineering-
based methods.

It can be observed in Fig. 5(c) and Fig. 5(d) that both FNN
and CNN can correctly locate the odor source in the sample
OSL trial. In addition, both trajectories is similar to the one
produced by the moth-inspired method, which is a preferred
navigation method in this type of environment (i.e., laminar
flow environments). Specifically, the FNN search trajectory
shows a ‘casting’ alike behavior to traverse plumes when
plumes are absent, while the proposed CNN acts analogously
to the ‘surge’ behavior that controls the robot consistently de-
tecting plumes by moving up-wind. Comparing FNN and CNN
search trajectories, the CNN generates a smoother trajectory
and finds the odor source within a shorter search time (97 s vs
93 s). Besides, it can be seen that the robot can consistently
detect plumes by following the trajectory produced by CNN,
which is beneficial for the plume-tracing robot to acquire
adequate odor source information.

B. Varying Search Conditions

To investigate the generalization of the proposed DNN
models, they are implemented in OSL tests with different
search conditions, including varying robot initial positions,
odor source locations, and environmental settings.

(a) (b)

(c) (d)

Fig. 5. Search trajectories of expert methods and DNNs in the sample OSL
trial, where (a) Moth-inspired method, (b) Bayesian-inference method, (c)
FNN, and (d) CNN. The robot trajectory is presented by the blue curve, where
the robot initial and end positions are indicated in diagrams. The duration
of each navigation method is labeled by different color bars, where black
represents zigzag; red represents moth-inspired; green represents Bayesian-
inference; light blue represents FNN; yellow represents CNN.
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Fig. 6. Search trajectories generated by (a) FNN and (b) CNN in OSL tests
with varying robot initial positions

1) Varying Robot and Source Positions: In this group of
tests, the proposed DNN models are evaluated in environments
with different robot initial positions and odor source locations.
Fig. 6 presents the search trajectories of the proposed FNN and
CNN with six different robot initial positions that are unseen
for DNN models in the training process. It can be seen that
without considering the sensor data history, the proposed FNN
can barely adapt to new search conditions, where only three
out of six trajectories correctly find the odor source. On the
other hand, given the same training data sets, the CNN is more
effective than FNN in this group of tests, where all trajectories
terminate at the odor source location, i.e., the robot correctly
finds the odor source in six tests under the direction of the
proposed CNN model.

Then, the DNN models are implemented in environments
with different the odor source locations. It was discovered in
previous test results that if the odor source location is fixed in
the training data sets, a DNN model can memorize the odor
source location and skip the plume tracing process, i.e., the
robot controlled by the DNNs will proceed directly to the fixed



(a) (b) (c) (d)
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Fig. 7. Search trajectories of the proposed CNN in environments with varying odor source locations, where (a) (10,10) m, (b) (10,20) m, (c) (30,-20) m, (d)
(35,-15) m, (e) (40,20) m, (f) (40,-20) m, (g) (10,0) m, and (h) (15,5) m.

TABLE II
ENVIRONMENTAL SETTINGS AND SEARCH TIME OF DIFFERENT NAVIGATION METHODS

Environment
Index

Mean Wind Velocity
U0

(m/s)

Gaussian
Noise

Variance
ς

Test
Index

Moth-inspired
Method

(s)

Bayesian-
inference
Method

(s)

The Proposed
FNN
(s)

The Proposed
CNN

(s)

Env. 1 (1, 0) 3
Test 1 93 123 97 93
Test 2 91 116 98 103
Test 3 96 139 123 102

Env. 2 (1, 0) 10
Test 1 93 151 - 129
Test 2 128 125 - 95
Test 3 94 128 - 110

Env. 3 (1,−0.4) 8
Test 1 - 129 - 138
Test 2 - 116 - 140
Test 3 - 139 - 137

Env. 4 (2.5, 0) 10
Test 1 90 110 - 106
Test 2 94 176 - 104
Test 3 95 129 - 145

Env. 5 (2.5, 0.4) 12
Test 1 239 95 - 159
Test 2 - 100 - 160
Test 3 - 133 - 108

-: Fail to locate the odor source within 500 s.

odor source location instead of tracing plumes. To address this
problem, the odor source location is varying in each OSL trial
in the training data sets.

To verify the generalization of the proposed DNN models
on varying odor source locations, eight different odor source
locations that are unseen to DNN models, i.e., the ones that
are not included in training data sets, are tested. Fig. 7 presents
search trajectories of implementing the proposed CNN in these
tests. We can observe that the robot successfully finds the odor
source in these eight trials, which demonstrates the validity
of the proposed CNN model for finding varying odor source
locations. The proposed FNN fails to find the odor source
in this group of tests. One possible approach to improve the
FNN’s search performance is to enlarge the training data set,

i.e., make training data set cover more search examples.
2) Varying Environmental Settings: In this group of tests,

environmental settings, i.e., mean flow speed U0 and Gaussian
noise variance ς , are varying to produce different airflow
environments. To evaluate the search performance of the
proposed DNNs, two expert methods are also implemented
and compared in this group of tests. Table II presents five
different environments and the corresponding search time of
four navigation methods. Each navigation method is repeatedly
performed three times in every environment. As a remainder,
environmental settings in Env. 2-5 are unseen for DNN models
during the training process.

As presented in Table II, the proposed FNN can only find
the odor source in a laminar flow environment, i.e., Env. 1,
while the proposed CNN succeeds in all tests. This result



TABLE III
STATISTICAL RESULTS OF REPEATED TESTS AND THE COMPARISON OF

DIFFERENT NAVIGATION METHODS

Total
Tests

Successful
Tests

Success
Rate

Averaged
Search Time (s)

Moth-inspired
Method 15 10 67% 240.9

Bayesian-inference
Method 15 15 100% 127.3

The Proposed
FNN 15 3 20% 421.2

The Proposed
CNN 15 15 100% 121.9

confirms that without considering the sensor data history
as inputs, the FNN structure can hardly learn an effective
plume tracing method, which is not suitable for an OSL
problem. By contrast, search results of CNN in this group
of tests indicate that the proposed CNN can learn an effective
navigation strategy and apply the learned knowledge on new
environments.

Table III presents the statistical results of different naviga-
tion methods on varying environment tests. Compared to ex-
pert methods, the proposed FNN barely succeeds in these tests,
As for the proposed CNN model, it outperforms the moth-
inspired method in terms of the success rate (100% vs 67%)
and achieves a shorter averaged search time than the Bayesian-
inference method (121.9 s vs 127.3 s). Additionally, compared
to complex Bayesian-inference method, the CNN method
is preferred to be implemented on real-world applications
due to the low computational complexity. As mentioned, the
computational time of the Bayesian-inference method grows
significantly with the increase of the size of the search area
[11]. When the search area becomes complex and large, the
Bayesian-inference method is not suitable for implementing on
robotic platforms due to the long querying time. On the other
hand, the computational cost of the proposed CNN is fixed,
which is independent with the size of the search area. Thus,
the proposed CNN is preferable for real-world applications.

C. Discussions

From experiment results, we observe that the DNN structure
is a critical factor that affects the DNN search performance in
OSL tests. Given the same training data, the FNN structure is
not as effective as CNN in experiments (e.g., Section III-B).
Because plume-tracing is a continuous process, the search
context is important for the robot to make decisions. The
CNN structure, which generates robot commands based on
previous sensor data, is suitable for the plum-tracing process.
Another essential factor is the quality and quantity of training
data sets. To achieve satisfying search results in unseen en-
vironments, a DNN model should be trained with data set
that covers sufficient search examples in both laminar and
turbulent airflow environments. To improve this work, other
expert methods could also be considered to generate training
data sets, and more types of DNN models can be investigated
and implemented in OSL problems.

IV. CONCLUSION

In this paper, we present a new design of the olfactory-based
navigation method via deep learning approaches. Two types
of DNN models are evaluated, namely FNN and CNN, which
control a plume-tracing robot to locate an odor source based
on the robot sensor data. After the supervised training with
traditional moth-inspired and Bayesian-inference methods, the
proposed FNN and CNN are validated in OSL tests with
varying search conditions. Simulation results show that given
the same training data, CNN performs better than FNN on
unseen search environments. Compared to traditional methods,
experiment results show that the proposed CNN is more
desired for autonomous OSL problems since it achieves a
comparable search performance with an engineering-based
method but is more stable and requires less computational
time.
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