
Multi-Modal Robotic Platform Development for
Odor Source Localization

1st Sunzid Hassan
Department of Computer Science

Louisiana Tech University
Ruston, USA

sha040@latech.edu

2nd Lingxiao Wang
Department of Electrical Engineering

Louisiana Tech University
Ruston, USA

lwang@latech.edu

3rd Khan Raqib Mahmud
Department of Computer Science

Louisiana Tech University
Ruston, USA

krm070@email.latech.edu

Abstract—This paper discusses customizing a popular robot
development platform ”Turtlebot3” for Odor Source Localization
(OSL) task. OSL technology allows a robot to locate and navigate
to odor sources in an unknown environment. Turtlebot3 is an
agile robot platform that includes Raspberry Pi for on-device
computation and an Open-source Control module for ROS
(OpenCR) board for additional sensor connection. It runs on
“Robot Operating System (ROS)” that allows it to run complex
algorithms that can subscribe and publish to specific robot
sensors and components. In combination, this robotics platform
can be customized to perform a wide variety of robot tasks.
This paper focuses on the additional olfactory sensor installation
for the OSL experiment. It also discusses an olfactory-based
navigation algorithm named moth-inspired algorithm for OSL
task. The algorithm was applied to real-world experiments with
varying conditions. The experiments show that the moth-inspired
algorithm successfully navigates to the odor source in laminar
airflow environments. The paper also discusses the future scope
of adding vision sensors and machine learning algorithms.

Index Terms—Odor source localization, moth-inspired al-
gorithm, Turtlebot3, Robot Operating System, Multi-modal
robotics.

I. INTRODUCTION

Animals interact with the external environment using sen-
sory systems – visual, auditory, olfactory, gustatory, tactile,
etc. These systems help animals sense and interpret the envi-
ronment and perform activities like foraging, mating, evading
predators, etc. for survival. A similar strategy of using multiple
sensors is also used in robotics for sensing and acting in
unknown environments. A robot equipped with a visual sensor
(camera), olfactory sensor (e.g., chemical sensor), tactile sen-
sor (e.g., touch sensor, airflow detection sensor), etc. can sense,
navigate and manipulate unknown environments to achieve
specific goals.

Olfaction is an important sensing system for robotics. Odor
Source Localization (OSL) deals with technologies that can
allow robots to perform tasks such as detecting and navigating
towards a target odor source in an unknown environment
[1]. OSL has increasingly important applications including
monitoring air pollution [2], locating chemical gas leaks [3],
locating unexploded mines and bombs [4], and marine surveys
such as finding hydrothermal vents [5], etc.

This paper focuses on the development of a robotic agent
used for the robotic OSL task. This robotic agent is capable of
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Fig. 1. (a) Turtlebot3 waffle pi model used in this work. In addition to the
onboard sensors, the robot is equipped with an anemometer for measuring
wind speeds and directions; a chemical sensor for detecting odor plumes. (b)
The experiment setup. The robot is initially placed at downwind area with
the object of finding the odor source. A humidifier loaded with ethanol is
employed to generate odor plumes, and an electrical fan is placed behind the
humidifier to create an artificial wind field.

sensing odor plumes and navigating itself to the odor source
autonomously in unknown environments. In this work, we use
the Turtlebot3 waffle-pi as the robotic platform. The robot
utilizes Robot Operating System (ROS) for operation. This
robot is pre-built with a camera, 360-degree Light Detection
and Ranging (LiDAR), gyroscope, accelerometer, and mag-
netometer for sensing the surrounding environment, and two
motors for traveling in the environment. It uses Raspberry
Pi 4 as the central processing unit that allows complex on-
board computation and easier communication with remote
computers. It uses OpenCR board (i.e., an open-source control
module customized for the Turtlebot3 robot) as a powerful
and customizable robot controller. The modularity of Turtlebot
makes it possible to customize it with additional sensors.
Additionally, ROS allows minute control over specific robot
components, so that it is possible to subscribe to specific
sensors and publish to navigation from the remote Personal
Computer (PC). The ROS supports both Python and C++ as
programming languages. Thus, existing mathematical libraries
published in Python and C++ can easily be incorporated into
algorithms written for the robot.

In addition to hardware and sensors, an effective navigation
algorithm is required for the OSL task, which guides the
robot to approach the odor source location. Like image-based
navigation algorithms, which use captured images as cues to
navigate a robot, olfactory-based navigation algorithms direct a



robot by using detected odor plume and airflow direction/speed
as cues in finding the odor source [6]. In this paper, a bio-
inspired algorithm has been proposed for the OSL task, which
makes the robot mimic animal odor search behaviors.

Specifically, the moth-inspired algorithm was employed in
this project, which is a bio-inspired method that imitates male
months mate-seeking behaviors [7]: a male moth flies upwind
when detects pheromone plumes, emitted from a female moth,
and moves across wind direction when plumes are absent. This
behavior can be framed as a ‘surge/casting’ model [8], where
a plume tracing robot traverses wind when missing plume
contact (i.e., termed ‘casting’ behavior) and moves against
the wind direction when detecting plumes (i.e., termed ‘surge’
behavior).

Contributions of this work can be summarized as 1) discuss
the customization of the Turtlebot3 robot platform for odor
source localization experiments; 2) find the search perfor-
mance of the moth-inspired algorithm in different real-world
search environments; 3) discuss possibilities of combining
more sensors and machine learning based algorithms in the
same robotics platform. The remainder of the paper is orga-
nized as follows. The robotic platform and experiment field
are presented in Fig. 1. The Turtlebot3 robot was customized
for the OSL task, the search area included an odor source
with fans. The location of the odor source was unknown
to the robot and changed in different experimental runs. In
the remaining of this paper, Section II reviews the recent
progress of olfactory-based navigation algorithms; Section III
reviews technical details of the robot customization and moth-
inspired navigation algorithms; Section IV presents details
of performing the real-world experiments. Finally, Section V
includes a discussion of including vision sensor with discussed
olfactory-based sensors for the Odor Source Localization task.
It also includes a discussion of the incorporation of machine
learning-based methods for the OSL task.

II. RELATED WORKS

A. Olfactory-based Navigation Algorithms

The objective of olfactory-based navigation algorithms is
to command robots to find odor sources relying on olfaction
sensors. Like image-based navigation algorithms [9], which
extract the information from images as a reference to navigate
a robot, olfactory-based navigation algorithms detect odor
plumes as cues to guide robots moving toward odor sources.
Traditional olfactory-based navigation algorithms include the
following:

1) Chemotaxis: commands the robot to trace plumes by
following the odor concentration gradient [10]. A common
setup is to install two chemical sensors on two sides of
the robot, and the robot moves toward the side with higher
chemical concentration [11], [12]. The chemotaxis method is
applicable in laminar flow environments, where odor plumes
disperse in a steady and spatially coherent trajectory, but in
turbulent flow environments, the plume is stretched and twisted
to form a patchy trajectory and an intermittent concentration

gradient. Consequently, the chemotaxis method tends to be
ineffective in such turbulent flow environments.

2) Bio-inspired methods: involve directing a robot to im-
itate olfactory behaviors observed in animals. One example
of such behavior is the ’surge/casting’ search strategy found
in moth-inspired methods [13], [14], [15], where the robot
exhibits a ’surge’ behavior by moving against the wind
direction when it detects odor plumes and switches to a
’casting’ behavior, moving across the wind direction, when
it loses contact with the plume. Lobster-inspired methods can
be viewed as an enhanced version of chemotaxis. In these
methods, the robot retraces its path when sensors on two sides
of the robot detect the same concentration [16]. Bio-inspired
methods are typically designed to be straightforward and
computationally efficient during the search process. However,
in turbulent flow environments, the intuitive cross-wind search
strategy (’casting’ behavior) may struggle to effectively guide
the robot back to plume detection, resulting in longer search
times and occasionally leading to search failures [17].

3) Probabilistic methods: employ mathematical and phys-
ical principles to estimate the distribution of odor plumes and
predict the locations of odor sources. In these methods, the
search area is divided into multiple cells, each assigned a
probability representing the likelihood of containing the odor
source. As the robot navigates, these probabilities are updated,
eventually converging to a specific region, indicating the
estimated location of the odor source. Various techniques are
used to calculate these source probabilities, including Bayesian
inference [18], particle filters [19], and partially observable
Markov decision processes (POMDP) [20], among others.
Once the source probabilities have been determined, path
planning algorithms like artificial potential field (APF) [21]
and A-star [22] are employed to generate search trajectories
that guide the robot toward the estimated target.

These probabilistic methods provide a systematic and data-
driven approach to odor source localization, allowing robots to
make informed decisions based on observed data and statistical
reasoning. However, the computational load of updating the
source probabilities grow significantly with the increase of
search area size and the number of cells inside the search area,
making this type of method inapplicable to robotic agents,
which have limited computational resources.

B. Robotic OSL on Ground Mobile Robots

The early attempt of applying robotic OSL algorithms
on robotic agents was utilizing a ground mobile robot. For
instance, Hayes et al. [23] utilized a group of ground mobile
robots for locating the odor source location. Each robot is
equipped with an odor detection sensor to measure odor
concentrations at the robot position. During the search process,
robots traveled in the search area, following a random walk
behavior, to construct a global plume intensity map, from
which the odor source location could be identified. Ryohei et
al. [24] applied a simple moth-inspired method on a ground
mobile robot. The search strategy can be summarized as a
‘surge/casting’ behavior pattern. A wheeled ground vehicle,



Fig. 2. System configuration. This system contains two main components,
including the Turtlebot3 and the remote PC. The solid connection line
represents physical connection, and the dotted connection line represents
wireless link.

equipped with a chemical and a wind sensor, was deployed
to find an odor source in a closed environment. Lochmatter et
al. [25] also implemented the ‘surge/casting’ behavior pattern
on a wheeled ground vehicle to find an odor source in a
laminar flow environment. Ground mobile robots can also be
applied to generate a 3-dimensional plume distribution map.
Lu et al. [26] proposed a ground robotic agent to measure
odor plume distribution at varying heights using a ground
vehicle equipped with multiple gas sensors installed on a pole
at different heights

Ground mobile robots are commonly employed as the
search agent in the robotic OSL task. Since this robotic plat-
form is easy to obtain and evaluate. Compared to airborne and
underwater robots, ground mobile robots have the advantage
of large payload, long duration, and easy recovery. Moreover,
ground mobile robots can be operated in both indoor and
outdoor environments without extra facility installation (e.g.,
a special safety net or cage is required to operate a drone in
an indoor environment, and for operating AUVs, large water
tanks or pools are required), making it the most flexible robotic
agent to evaluate olfactory-based navigation algorithms.

III. METHODOLOGY

A. Multi-Sensory Robot Platform Development for OSL task

1) Turtlebot3 Waffle-Pi: Turtlebot3 is a popular mobile
robot system for research and education. It is highly modular
and customizable. It has Raspberry Pi 4 as the CPU, and
the implemented system uses Ubuntu 20.04 as the Operating
System of the Robot. Thus, the robot had standalone rich com-
putation and connectivity capabilities. The onboard OpenCR
controller allows the Turtlebot3 to be paired with additional
sensors for increasing its functionalities. Turtlebot3’s built-
in sensors include Raspberry Pi Camera, 360-degree LiDAR
sensor, 3-axis gyroscope, 3-axis accelerometer, 3-axis mag-
netometer. These sensors help Turtlebot3 to measure 9-axis

Fig. 3. Robot notations. Robot position (x, y) and heading ψ are monitored
by the built-in localization system. Wind speed u and wind direction ϕ are
measured from the additional anemometer in the inertial frame.

inertia. It also has a DYNAMIXEL diver for navigation.
Turtlebot3 can perform SLAM (simultaneous localization and
mapping), Navigation, and manipulation tasks with the built-in
sensors.

2) Turtlebot3 Operation: Fig. 2 presents the proposed
system configuration for the robotic system, which includes a
robotic agent, i.e., Turtlebot3, onboard controller, and a ground
station, i.e., a remote PC.

ROS Noetic was installed in the paired remote PC for
controlling the robot. A local area network was used to connect
the robot to the remote PC. ROS supports both Python and
C++ custom programs. This means that it is possible to directly
use external Python or C++ library functions in the robot.
ROS allows custom programs to subscribe to specific sensors,
conduct calculations, and publish (e.g., heading commands)
to the robot. The sensor subscription, heading calculation
with the help of external library (e.g., Pytorch) functions and
heading publication can all be bundled in a single program
that runs on the more powerful remote PC. The onboard
Raspberry Pi’s networking feature ensured low latency and
reliable connectivity between the robot and the remote PC.

3) Onboard Sensor Suite: For the OSL task, additional ol-
factory sensors were paired with the Turtlebot3. For chemical
detection, an MQ3 alcohol detector sensor was used. MQ3
sensor is a widely used Metal Oxide Semiconductor (MOS)
sensor. It operates on 5V DC and consumes about 800mW. It
can detect alcohol concentrations ranging from 25 to 500 ppm.
The onboard anemometer (WindSonic, Gill Inc.) was used for
airflow direction and wind speed measurements in the body
frame.

Fig. 3 summarizes parameters measured via the onboard
sensor suite, including the robot positions (x, y) and robot
heading ψ in the inertial frame, chemical (odor) concentration
ρ, wind speeds u, wind direction ϕ in the local frame during
the plume tracing process. To convert wind direction and wind
speed into the global frame, we follow the following equations:

ϕInertial = ϕ+ ψ. (1)

All angle-related parameters are ranged from [π/2, π/2]. In
addition, the employed chemical sensor is known with a long
recovery time after a detection, i.e., the odor concentration
measurement decreases to a normal value slowly. Thus, instead



Algorithm 1 Chemical Sensor Data Processing
1: if ρ− ρpre > 0 then
2: Plume detected, D = 1:
3: else
4: Plume not detected, D = 0:
5: end if
6: ρpre = ρ

of using a fixed concentration threshold, we utilize the gradient
of odor concentration to distinguish odor detection and non-
detection events, as presented in Algorithm 1. For instance, if
the odor gradient is positive, i.e., ρ− ρpre > 0, the chemical
sensor detects odor plumes; if the odor gradient is negative,
i.e., ρ − ρpre < 0, the chemical sensor is leaving the odor
plume. In Algorithm 1, D is the odor detection indicator,
where D = 0 indicates that the robot does not detect odor
plumes, and D = 1 represents that the robot has an odor
plume detection.

The proposed olfactory-based navigation algorithm is im-
plemented on the remote PC to process sensor observations,
transmitted from the robotic agent. The algorithm calculates
robot actions to guide the robot to find the odor source
location. Once the robot actions are obtained, they will be
transmitted back to the robot via a wireless communication
link. We set the updating rate of the olfactory-based navigation
algorithm at 2Hz. Moreover, to control a ground mobile robot
on a 2-dimensional plane, only speed and heading commands
are needed. To simplify the control problem, we assume the
robot moves at a constant speed, i.e., vc = 0.2 m/s, and only
heading commands ψc are needed, which is the output from
the olfactory-based navigation algorithm.

4) Search Area: The search area is a 2-dimensional space
as presented in Fig. 1(b). The size of the search area is
5.5m × 2.4m. Inside the search area, an odor source is
presented and its location is hidden to the search robot. In the
experiment, we utilize non-toxic materials, i.e., ethanol, as the
odor source and employ a humidifier to continuously release
ethanol in the search environment. Moreover, a coordination
is constructed over the search area to represent robot positions
in the inertial frame i.e., x − y. During the search, the robot
position is determined via the onboard LiDAR sensor, and
x ∈ [0, 5.5] m and y ∈ [0, 2] m.

B. Odor Source Localization Algorithm

An OSL can be divided into three stages, including plume
finding, plume tracing and source declaration [27]. Fig. 4
presents the flow-diagram of the proposed odor source lo-
calization algorithm. In the first ‘Plume Finding’ phase, the
robot performs a ‘zigzag’ behavior to sense the existence
of odors in the environment. If the robot detects an odor
concentration surpassing a predefined threshold, the system
proceeds to the ‘Plume Tracing’ phase, where the moth-
inspired method is activated to calculate robot actions based on
chemical and wind sensor readings. These robot actions will
lead the robot to the odor source location. In the final ’Source

Fig. 4. The flow diagram of the proposed OSL algorithm.

(a) (b)

Fig. 5. The proposed moth-inspired search behaviors in the ‘Plume Tracing’
stage, including (a) ‘Surge’ behavior and (b) ‘Casting’ behavior.

Declaration’ phase, the robot declares the odor source location
and completes the OSL task. Moreover,

1) Plume Finding: The first stage is plume finding, which
aims to detect plume in the search area. Once the robot detects
plume in the search area, the plume tracing stage initiates.
Here, we utilize a ‘zigzag’ search behavior [28] in the plume
finding phase to sense the existence of odor plumes. During the
‘zigzag’ behavior, the robot search trajectory is dominant with
the crosswind movements since the robot has a higher chance
to detect odor plumes with crosswind movements than along-
wind excursions, without the prior information of the odor
source. Besides, we include a smaller along-wind component
in the ‘zigzag’ behavior to ensure the exploration. During the
‘zigzag’ behavior, the robot travels at a constant speed, i.e.,
vc, and when the robot reaches the boundaries of the search
area, it turns the heading toward the inside of the search area
to continue the search. The robot will switch to the plume
tracing stage once the detected odor concentration is greater
than a pre-defined threshold.

2) Plume Tracing: In the ‘Plume Tracing’ stage, we pro-
posed a moth-inspired method to command the robot to search
for the odor source. The proposed moth-inspired method [29]
can be summarized as the ‘surge’ and ‘casting’ behaviors, as
presented in Fig. 5.

The ‘surge’ behavior is activated when the robot detects
odor plumes, i.e., D = 1. In this behavior, i.e., Algorithm 2,
the robot moves upwind to progress towards the odor source
location. The heading command, i.e., ψc, in this behavior can
be computed via:

ψc = ϕInertial + 180. (2)

If the robot moves out of plumes, it will activate the
’casting’ behavior, i.e., Algorithm 3, to move cross-wind until
it finds plumes again. During this behavior, the robot uses the
equation 3 to calculate the target heading ψc.

ψc = ϕInertial + 90. (3)



Algorithm 2 ‘Surge’ Behavior
1: if Behavior is ’Surge’ then
2: ψc = ϕInertial + 180
3: if Plume not detected, D == 0 then
4: return ’Track-out’ Behavior
5: end if
6: end if

Algorithm 3 ‘Casting’ Behavior
1: if Behavior is ’Casting’ then
2: ψc = ϕInertial + 90
3: if Plume is detected, D == 1 then
4: return ’Surge’ Behavior
5: else
6: return ’Casting’ Behavior
7: end if
8: end if

Once the robot re-detect odor plumes, it switches back to the
‘surge’ behavior to continue the upwind movement. These two
search behaviors are alternated in the ‘Plume Tracing’ phase
until the robot finds the odor source.

3) Source Declaration: In this work, the robot is considered
as successfully found the odor source if the robot position is
within 0.5 m of the odor source location. In the future, we are
planning to use a camera in the source declaration phase and
add a vision processing module to automatically declare the
odor source location.

IV. EXPERIMENTS

A. Experiment Setup

Experiments were conducted in the Automatic Control Lab
at the Louisiana Tech University. The lab area was divided into
a search area where the robot can navigate and an operation
area for the remote PC. The size of the search area is 5.5×2.4
m2. The robot, odor and airflow source were randomly placed
in this search area for each trial run. Ethanol vapor was
employed as the odor source as it is commonly implemented
in OSL research [30]. A humidifier was used to disperse
ethanol vapor consistently as the odor plume. An electric fan
was used behind the humidifier to increase odor propagation.
Before the experiment, a map of the search area is created with
Turtlebot3’s Simultaneous Localization and Mapping (SLAM).
The robot maps the area, obstacle and boundaries of the search
area using the 360-degree LiDAR sensor. Turtlebot3 uses both
odometry and LiDAR scan data to calculate its position and
rotation in reference to the map coordinate system.

During an experiment run, the robot sends sensor measure-
ments to the remote PC. The remote PC runs the moth-inspired
navigation algorithm to calculate robot’s heading command
and transmit it back to the robot. The robot follows the heading
command to move to a new location inside the search area and
repeats the above process until it finds the odor source location,
i.e., the robot gets within 0.5m (this threshold is determined

(a) t = 1s (b) t = 15s (c) t = 30s

(d) t = 45s (e) t = 60s (f) t = 76s

Fig. 6. Snapshots of an OSL test with the moth-inspired method. The robot
position is highlighted with the a yellow rectangle, and the robot correctly
finds the odor source at 76 s.

based on the search area and robot dimensions) of the odor
source.

B. Search Results

Fig. 6 depicts Turtlebot’s OSL navigation based on the
moth-inspired method. At the start of the search (t = 1 s),
the robot senses odor detection and switches to the ’Plume
tracing’ stage to trace the odor source location. In this stage,
the robot employed the ‘surge’ behavior to move against the
wind direction to approach the odor source location (from
t = 1 s to t = 15 s). Then, the robot lost the plume contact
at t = 17 s and switched to the ‘casting’ behavior to detect
plumes in crosswind movements. At t = 30 s, it reacquired
the odor plumes and switched back to the ‘surge’ behavior to
move against the wind direction. At t = 45 s, the robot moves
close to the odor source location and remains in the ‘surge’
behavior until it finds the odor source at t = 76 s. The video
of this trial can be found at 1.

V. CONCLUSION AND FUTURE WORK

This paper presents a robotic system developed for the
robotic OSL task. A Turtlebot3 robot was employed as the
platform and was installed with a comprehensive sensor suite
to sense its position, airflow speed and direction, and chemical
concentration at its location. In the proposed robotic system,
sensory observations captured from the robotic agent will
be transmitted back to a ground station to calculate robot
actions. Once the robot actions are obtained, they will be
sent back to the robot and command the robot to move to a
new position. This process is repeated until the robot finds the
odor source location. Through a robotic OSL trial, we verify
the effectiveness of the proposed robotic system in finding an
odor source in unknown environments. Moreover, the search

1Experiment video link: https://youtu.be/726iJKpz1Ic



Fig. 7. (a) Picture of odor plumes captured from Turtlebot3 waffle pi’s camera
from a distance. (b) Picture of odor plumes captured from Turtlebot3 waffle
pi’s camera from close.

results show that the proposed moth-inspired algorithm can
successfully navigate a ground mobile robot to the odor source
location in a lab environment.

Turtlebot3 can take pictures and record video with the built-
in Raspberry Pi Camera. Fig. 7 shows photos captured with
Turtlebot3. The future scope of the robot platform includes the
incorporation of vision sensor for OSL task. Olfactory-based
algorithms can perform well in laminar airflow environments.
But in turbulent airflow environment, erratic airflow direction
and chemical detection reading can disrupt steady navigation.
Computer vision can be an effective addition to existing
olfactory sensing in turbulent airflow environments. With the
recent success of machine learning techniques, deep learning
models, such as convolutional neural networks (CNNs) are
commonly used for processing images and detecting objects
automatically [31]. One direction of our future work is to
utilize a pre-trained vision model, such as the YOLO series
[32], to process images captured from the mobile robot to
extract odor source information and integrate it with olfactory
observations from chemical and wind sensors. The combi-
nation of computer vision and robotic olfaction provides a
more comprehensive observation of the environment, enabling
the robot to interact with the environment in more ways and
enhancing the navigation performance.

The future scope of this robot platform also includes using
machine learning to calculate the robot’s target heading. Re-
inforcement learning (RL) method can be used for olfactory-
based navigation in robots [17]. In RL-based method, the robot
is a plume-tracing agent and the search area is the outside
environment, and the robot is rewarded as it chooses actions
that benefit in finding the odor source [17]. Alternatively,
supervised learning methods, including using a feedforward
(FNN) and a long short-term memory neural network (LSTM)
can be used for OSL tasks [33]. The ROS platform used
in Turtlebot3 allows efficient packaging of machine learning
based libraries in a single Python or C++ program. The future
scope of this platform includes incorporating computer vision
and machine learning based target heading calculation for OSL
tasks, and comparing the solution with bio-inspired methods.
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