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Abstract: Odor source localization (OSL) technology allows autonomous agents like mobile robots to
localize a target odor source in an unknown environment. This is achieved by an OSL navigation
algorithm that processes an agent’s sensor readings to calculate action commands to guide the robot
to locate the odor source. Compared to traditional ‘olfaction-only’ OSL algorithms, our proposed OSL
algorithm integrates vision and olfaction sensor modalities to localize odor sources even if olfaction
sensing is disrupted by non-unidirectional airflow or vision sensing is impaired by environmental
complexities. The algorithm leverages the zero-shot multi-modal reasoning capabilities of large
language models (LLMs), negating the requirement of manual knowledge encoding or custom-
trained supervised learning models. A key feature of the proposed algorithm is the ‘High-level
Reasoning’ module, which encodes the olfaction and vision sensor data into a multi-modal prompt
and instructs the LLM to employ a hierarchical reasoning process to select an appropriate high-level
navigation behavior. Subsequently, the ‘Low-level Action’ module translates the selected high-level
navigation behavior into low-level action commands that can be executed by the mobile robot. To
validate our algorithm, we implemented it on a mobile robot in a real-world environment with non-
unidirectional airflow environments and obstacles to mimic a complex, practical search environment.
We compared the performance of our proposed algorithm to single-sensory-modality-based ‘olfaction-
only’ and ‘vision-only’ navigation algorithms, and a supervised learning-based ‘vision and olfaction
fusion’ (Fusion) navigation algorithm. The experimental results show that the proposed LLM-based
algorithm outperformed the other algorithms in terms of success rates and average search times in
both unidirectional and non-unidirectional airflow environments.

Keywords: odor source localization; multi-modal robotics; large language models (LLMs); robot
operating system (ROS)

1. Introduction

Humans sense the external environment using sensory systems such as vision, olfac-
tion, audition, etc. The data are then used for decision making within the environment.
Similarly, a mobile robot can perceive the environment using artificial sensory devices like
a camera, chemical sensor, microphone, etc. Of the sensory systems, olfaction was the
first to evolve in organisms [1], allowing them to detect predators, food, potential mates,
etc. [2]. However, the application of olfaction in robotics is not well studied. Robotic OSL is
the technology that allows robots to localize an unknown odor source in the surrounding
environment [3]. The technology is used in monitoring wildfires [4], chemical gas leaks [5],
air pollution [6], underground gas leaks [7], identifying unexploded mines and bombs [8],
locating hydrothermal vents [9], etc.

Advancements in robotics and autonomous systems have enabled the deployment of
mobile robots to locate odor or chemical sources. Identifying the source of an unknown
odor necessitates a proficient OSL navigation algorithm that directs the robot based on
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sensor readings [10]. Conventional OSL algorithms comprise animal-behavior-mimicking
bio-inspired techniques, mathematical model-based engineering-based approaches, and
machine learning-based strategies. Notable bio-inspired techniques include the moth-
inspired algorithm, which emulates the mate-seeking behaviors of male moths [11], allow-
ing a robotic agent to perform ‘surge/casting’ movements [12] to localize the odor source.
Engineering-based approaches include the particle filter algorithm [13], infotaxis [14,15],
stochastic mapping [16], etc. These methods update predictions regarding the odor source’s
location based on olfactory observations. Lastly, machine learning-based OSL methods
feature reinforcement learning [17] and deep supervised learning [18] techniques.

Most of the traditional OSL algorithms rely on olfactory (i.e., chemical and airflow)
sensing to detect and navigate to the target odor source. However, methods that de-
pend exclusively on olfactory sensing tend to underperform in environments where non-
unidirectional airflow disrupts olfactory detection. The integration of vision and olfaction
offers a great advantage to ‘olfaction-only’ systems. For example, fruit flies use a combina-
tion of vision and olfaction to locate colorful aromatic food [19]. They integrate olfactory
information with visual landmark information to ‘see’ where the fruit aroma is coming
from. This sensory integration allows them to precisely pinpoint the location of the fruit
in their environment. Similarly, a robot equipped with both olfactory and vision-sensing
abilities (such as a camera and a chemical sensor) and a navigation algorithm capable of
effectively integrating these sensory modalities can more efficiently locate an unknown
odor source in complex environments.

Humans often recognize visual objects in the surrounding environment and use
relationship of those objects to the goal in making navigation decisions. A navigation
system that tries to imitate such behavior needs to have several complex abilities—the
ability to understand navigation objectives, the ability to detect objects from sensory inputs
like vision, the ability to deduce contextual relations of those objects to the navigation goal,
etc. Multimodal LLMs demonstrate state-of-the-art performance in reasoning over multiple
sensory modalities like text, vision, and sound [20]. Compared to other expert systems, the
motivation for using LLMs in this work is to utilize LLMs’ strong multi-modal semantic
understanding and reasoning capabilities. However, applying these models in robotics
introduces additional challenges, such as converting robot sensor readings into a format
that can be processed by the LLMs, and subsequently translating the LLM’s textual outputs
into actionable robot commands.

The proposed OSL system is shown in Figure 1. The core of the system is an intelligent
agent, which encodes vision and olfaction observations with a hierarchical navigation
behavior selection instruction set for an LLM. The LLM then applies reasoning process
over the multi-modal input and selects a high-level navigation behavior. Finally, a low-
level action module translates the navigation behavior for the mobile robot. To validate
the proposed algorithm, we conducted tests in a real-world environment where olfaction
was challenged by non-unidirectional airflow, vision was challenged by obstacles, and
multi-modal reasoning was challenged by environmental complexities.

Figure 1. Flow diagram of the OSL system. The robot platform is equipped with a camera for vision
and a chemical detector and an anemometer for olfactory sensing. The proposed algorithm utilizes a
multi-modal LLM for navigation decision making.
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The main contributions of this work can be summarized as follows:

1. Integrating vision and olfaction sensing to localize odor sources in complex real-
world environments.

2. Developing an OSL navigation algorithm that utilizes the zero-shot multi-modal
reasoning capability of a multi-modal LLM for OSL. This includes designing modules
to process inputs to and outputs from the LLM model.

3. Implementing the proposed intelligent agent in real-world experiments and comparing
its search performance to the rule-based Fusion navigation algorithm [21].

In the following sections of this paper, Section 2 includes a literature review of recent
OSL algorithms; Section 3 reviews the details of the implemented OSL algorithm; Section 4
details the experiment setup and results; Section 5 includes limitations and future research
directions; and finally, Section 6 presents the conclusions of the work. The code for this
work can be found at https://github.com/SunzidHassan/24_LLM-OSL (accessed on
5 December 2024).

2. Related Works
2.1. Olfactory-Based Methods

Various organisms utilize olfaction to localize odor sources. This includes a bacterium
navigating a gradient in amino acid or a lion tracking prey. Algorithms mimicking olfaction-
based navigation behaviors of organisms is an effective approach in robotic OSL research.

Chemotaxis represents the simplest OSL strategy in biological organisms, where
navigation relies solely on olfaction. For instance, bacteria demonstrate chemotaxis by
altering movement based on odor concentration changes. They make fewer turns in the
presence of an attractive chemical, resulting in straighter movement. Conversely, in the
absence of a gradient or when moving away from higher concentrations, their default
turning probability remains the same [22]. This straightforward approach allows single-
celled organisms to navigate a gradient of appealing chemicals through a guided random
walk. Nematodes [23] and crustaceans [24] also utilize chemotaxis-based OSL. Early OSL
efforts focused on implementing such simple gradient-following chemotaxis algorithms.
Typically, these methods used a pair of chemical sensors on plume-tracing robots, guiding
them towards areas with higher concentration readings [25]. While early studies [26–29]
validated chemotaxis in unidirectional flow environments, alternative OSL methods were
proposed for complex non-unidirectional flow environments.

Anemotactic is a more sophisticated bio-inspired OSL method that uses both chemical
and airflow senses for navigation. A wide variety of organisms, including moths [30–32],
birds [33,34], etc., utilize this approach. Specifically, a prevalent moth-inspired method
was developed by mimicking the mate-seeking behavior of male moths [35]. This was
reinforced with additional bio-inspired search strategies in recent times, including zigzag,
fuzzy inference, and multi-phase exploratory [36] search behaviors. Jin et al. [37] trained a
neural network to predict gas flow patterns in an environment with obstacles, and combined
it with the probabilistic source term estimation (STE) algorithm to localize gas sources
in simulated and built environments. Ojeda et al. [38] utilized a predictive dispersion
filament model to predict gas-hit maps from airflow data, and compared it to a measured
gas-hit map to update the source probability distribution. Bio-inspired methods have also
been applied in complex three-dimensional search areas [39,40]. Note that both chemical
concentration and wind direction data are used in our proposed olfactory-based behavior.

Engineering-based methods differ from bio-mimicking algorithms by the utilization
of mathematical models to estimate locations of odor sources. They involve discretizing
the search area and learning the likelihood of each region containing the odor source. Algo-
rithms used for generating such maps include particle filters, infotaxis [14,15], stochastic
mapping [16], information-based search [41], source term estimation [42], partially observ-
able Markov decision processes [43], reactive-probabilistic search [44], etc. After predicting
the odor source location, robots are then guided to the source through path-planning
algorithms like artificial potential fields and A-star [45,46].

https://github.com/SunzidHassan/24_LLM-OSL
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Machine learning (ML)-based methods have achieved state-of-the-art performance in
tasks of multiple data modalities, including vision, audio, and text. These methods have
increasingly been applied for OSL tasks as well. In these types of methods, an artificial
deep neural network processes robot sensor data and generates robot headings [10]. These
models are trained using supervised or reinforcement learning methods. In supervised
learning-based methods, an Artificial Neural Network (ANN) is trained as a classifier to
predict the location of the odor source. For example, Kim et al. [18] trained a recurrent
neural network (RNN) with a long short-term memory (LSTM) module to predict an odor
source in simulation data. Bilgera et al. [47] used a convolutional LSTM model to detect an
odor source in data measured from an anemometer and chemical sensors. Thrift et al. [48]
trained a convolutional neural network (CNN) and a support vector machine (SVN) to
classify directions of multiple odor sources. In reinforcement learning, an ANN is trained to
generate action decisions to approach the odor source location. For example, Hu et al. [17]
used a deterministic policy gradient actor–critic network for autonomous underwater
vehicle (AUV) navigation. Wang et al. [49] developed an adaptive neuro-fuzzy inference
system (ANFIS) for OSL in a simulated environment. Both of these methods were validated
in simulated environments, highlighting the need for real-world implementations.

2.2. Vision and Olfaction Integration in OSL

The bio-inspired, engineering-based, and learning-based methods discussed above
are ‘olfaction-only’. Olfaction-only approaches suffer if olfaction sensing is disturbed by
non-unidirectional airflow, which is a common occurrence in real-world environments.
Additionally, olfaction data are typically represented as the concentration level or detection
rate of a chemical (e.g., ethanol). These representations inherently contain limited informa-
tion about the location of the odor source. Thus, it is unclear if more complex algorithms
can extract the ever-increasing amount of information from the olfaction data. Thus, it can
be argued that the addition of vision sensing is the next paradigm in OSL research. Among
the existing literature that has utilized vision sensing in OSL, Monroy et al. discussed using
vision sensing with olfaction sensing for gas source localization [50]. They defined the odor
footprint of some predefined objects using Web Ontology Language (WOL). They used the
You Only Look Once v3 (YOLOv3) model for detecting those objects and looked up the
odor footprint of those objects from the predefined knowledge base. The requirement of
knowledge definition makes the model less scalable for complex environments.

In our previous work, we fused vision and olfaction for OSL using a custom-trained
YOLOv6 model that directly detects visible plumes in the vision frame [21]. The algorithm
was effective in localizing odor sources in real-world environments with obstacles and
complex airflow. However, the vision model required visible odor plumes, and the algo-
rithm followed olfaction-based navigation if odor plumes were invisible or obstructed. But
even without visible odor plumes, vision data can still contain latent odor source location
information that can help narrow search boundaries. For example, we may narrow our
odor source search area to a restaurant without directly seeing the odor-emitting food. This
information extraction requires the visual reasoning ability that multi-modal LLMs possess.
This work aims to mitigate the limitations of previous vision and olfaction-based OSL
models, i.e., to replace manual knowledge-based and supervised learning-based models
with multi-modal reasoning-based models.

2.3. LLMs in Robotics

Large language models are a major milestone in the research of natural language
processing (NLP). LLMs are specialized models for natural language generation [51]. These
models are trained in a self-supervised learning approach, which negates the requirement
for labeled training data. This allows the models to be trained on vast textual data on
the internet. Additionally, it has been shown that there are similarities between the vi-
sual understanding of mammalian brains and the self-supervised learning approach [52]
that is utilized by LLMs. The models are based on the transformer architecture, with
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a self-attention mechanism that allows them to learn complex interrelations in textual
data [53]. LLMs exceed previous RNN-based language models due to emergent abilities,
including chain-of-thought reasoning [54], instruction understanding [55], and in-context
learning [56]. Notable examples of LLMs include BERT [57], GPT-3 [56], LLaMA [58], etc.

To further enhance the applications of LLMs in embodied intelligence tasks, re-
searchers are training these models with multi-modal data—text, image, audio, etc. These
models are termed vision language models (VLMs) or multi-modal LLMs [59]. Unlike
supervised vision classifiers, multi-modal LLMs are simultaneously trained with vision
and language data. For example, the multi-modal LLM CLIP [60] is trained to minimize the
distance of related images and text in a high-dimensional representation space. Training
over massive multi-modal datasets allows these models to learn complex interrelationships
among textual concepts and visual objects. This allows LLM-based robots to make zero-shot
or few-shot reasoning over visual objects and states in a complex environment [61]. Thus,
multi-modal LLMs are increasingly used in robotics tasks like generating robot action plans
by reasoning over multi-modal sensor data [62].

In recent years, a rich collection of work has been published in the field of LLM-based
robot navigation. These works can be broadly categorized into planning and semantic
understanding models. Planning-based methods directly generate action decisions to
guide the agent. Examples of such models include Clip-Nav [63], which utilizes an LLM
for extracting key location phrases from the provided navigation objective, and uses
CLIP VLM to ground the key phrases in the visual frame for navigation. A2Nav [64]
has five predefined actions, and separate navigators are trained for each of those actions.
It utilizes the GPT-3 model for predicting actions, and the BERT model for aligning the
predictions with the predefined actions. NavGPT [65] utilizes the GPT-4 model for zero-
shot navigation in simulated indoor scenarios. VELMA [66] identifies landmarks from
human-authored navigation instructions, and uses CLIP to ground them in a panoramic
view of the robot. The model then generates a textual representation of the environment
for textual command-based navigation. Semantic understanding models process sensor
inputs, and the insights are then used to generate agent actions. Examples of such models
include LM-Nav [67], which uses GPT-3 to translate verbal instructions into a series of
textual landmarks. CLIP grounds the landmarks to a topological map, and a self-supervised
robotic control model executes the physical actions. L3MVN [68] uses a language module to
handle natural language instructions, generating a semantic map embedded with general
physical world knowledge. Another module employs the semantic map to guide robotic
exploration. ESC [69] conducts zero-shot object navigation by leveraging commonsense
knowledge from pre-trained language models. It uses an LLM to ground objects and to
deduce the semantic relationship of those objects in an indoor environment. Exploration
techniques like ‘frontier-based exploration’ are used to navigate based on the semantic map.
Conceptfusion [70] utilizes a multi-modal LLM to generate a multi-modal semantic map of
the environment. The model can perform navigation using textual, visual, or audio cues.

2.4. Research Niche

The proposed LLM-based intelligent agent distinguishes itself from current LLM-
driven robotic applications in two key ways. (i) First, our system differs in its input
requirements. Rather than relying solely on visual observations, our model is designed
to process both visual and olfactory sensory data. These multi-modal inputs provide
the robot with a more comprehensive understanding of its environment, enabling richer
interactions. (ii) Second, our model is purpose-built for a specific task: robotic OSL. Unlike
generalized LLM-driven robots, which require vast amounts of training data and substantial
computational resources, our system focuses on a specialized task. For example, training
a general LLM-driven robot, such as Google’s RT-1 [71], for various object manipulation
tasks involved data collection from 13 robots over 17 months: a costly process. In contrast,
our system leverages pre-trained multi-modal LLMs.
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3. Methodology
3.1. Problem Statement

The objective of robotic OSL is to develop a navigation algorithm that can subscribe
to environment observations (i.e., state) from a mobile robot and process the state to
generate action instructions for the robot to localize an unknown odor source in the robot’s
surrounding environment. This process can be represented as

at = F(st), (1)

where st is the robot observations at time t, and at is the action output by the OSL function F.
Figure 2 illustrates the proposed robotic OSL framework. The algorithm has three

primary modules: the ‘Environment Sensing’ module (Section 3.2), that processes robot
sensory inputs; the ‘High-level Reasoning’ module (Section 3.3), that reasons over the
input and decides a high-level navigation behavior; and the ‘Low-level Action’ module
(Section 3.4), that translates those high-level behaviors into low-level actions that are
executable by the robot.

Figure 2. The framework of the proposed multi-modal LLM-based navigation algorithm. The three
main modules are the ‘Environment Sensing’ module, ‘High-level Reasoning’ module, and ‘Low-level
Action’ module.

3.2. Environment Sensing Module

Figure 3 illustrates the environment sensing notations for this project. The agent is
placed in an environment with an x − o − y inertial frame. The agent senses the environ-
ment in terms of its body frame xb − ob − yb. Table 1 includes the parameter definitions
and sensors. The mobile robot used in this work has a camera for visual detection, an
anemometer and a chemical sensor for olfactory detection, and a laser distance sensor
(LDS) for obstacle distance detection. The visual frame captured by the camera is the visual
observation p. An anemometer senses wind speed, u m/s, and wind direction, φb degrees,
in the body frame. The odor concentration ρ is expressed in ppm. At time t, the observed
state by the robot is st = [p, u, φb, ρ]t. The sensors used in the real-world experimentation
are discussed in Section 4.3.
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Figure 3. Robot notation. Robot position (x, y) and heading ψ are monitored by the built-in localiza-
tion system. Wind speed u and wind direction are measured from the additional anemometer in the
body frame. Wind direction in the inertial frame φInertial is derived from robot heading ψ and wind
direction in the body frame.

Table 1. Environment sensing parameters.

Symbol Parameter

p Visual observation

u Wind speed

φb Wind direction in body frame

ρ Odor concentration

3.3. High-Level Reasoning Module

The ‘High-level Reasoning’ module is the core of our proposed algorithm. The pro-
posed algorithm uses a multi-modal LLM to perform zero-shot reasoning over multi-modal
sensory inputs and decide high-level navigation behavior. Figure 2 shows the three main
sub-modules: (1) prompt generation; (2) multi-modal reasoning; and (3) action decoding.

Prompt generation is the first step in this module. Formulating effective prompts is
crucial for LLM’s reasoning process. Figure 4 shows the prompt design, that includes the
‘system prompt’ and the ‘olfaction description’. Specifically, the system prompt includes
the following:

• Task: Describes the objective and process the LLM should follow.
• Actions: Lists the actions available for the LLM to choose from.
• Hints: Guides the LLM to select appropriate vision-based or olfaction-based actions

based on multi-modal reasoning.
• Output instruction: Directs the LLM to generate only the action without addi-

tional reasoning.

The olfaction description includes the current odor concentration ρ and odor concen-
tration threshold as numeric values. The final prompt integrates all these instructions.

Figure 5 shows the process of querying the LLM. In this work, we employed GPT-4 as
the multi-modal LLM. By default, requests are sent to GPT-4 as a JSON payload, where the
image input p is encoded to text string using the default ‘base64’ function. Upon receiving
the payload, GPT-4 then decodes this string back into an image format for processing. All
these processes are encapsulated inside the GPT-4. That means that the GPT-4 is able to
analyze the graphic information.
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Figure 4. Implementation of the prompt. The system prompt includes the task, actions, hints and
output instructions. The final prompt (orange box) includes the system prompt (green box) and the
olfactory description (blue box).

The LLM was instructed to use the chain-of-thought reasoning process [54] to capture
logical coherence in multi-modal reasoning process over complex multi-modal sensory
inputs. We should mention that chain-of-thought reasoning is a type of method in prompt
engineering which studies how to ask questions (prompts) to LLMs. The goal of chain-of-
thought reasoning is to help the LLM to decode a complex problem into several middle
steps. Therefore, the most common usage of chain-of-thought reasoning is with LLMs.
Based on the provided prompt, the multi-modal LLM model selects appropriate high-level
‘vision-based’ or high-level ‘olfaction-based’ navigation behaviors. The ‘system prompt’
contains instructions for the LLM to follow a hierarchical order while selecting the high-
level navigation behaviors.

Figure 6 illustrates the hierarchical reasoning strategy for one time step, which was
modeled after human odor search behaviors, where vision and olfaction are used sequen-
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tially rather than simultaneously. Upon detecting an odor, vision is used first to locate the
odor source. If visual reasoning fails to identify the source, the olfaction-based approach
is employed to guide the robot toward the odor source. This decision-making process is
repeated until the robot finds the odor source, moves out of the search area, or is out of
time. Humans typically utilize vision to narrow down the odor source location. Based on
‘common sense’, humans can infer which objects within their visual field are likely to be
odor sources. For instance, if we smell gas in a kitchen, we can deduce that the stove is
a likely odor source. In this case, visual reasoning is utilized to pinpoint the odor source.
Similarly, LLMs possess this kind of multi-modal ‘common sense’ reasoning, allowing
them to deduce potential odor sources in their visual field.

Figure 5. Querying the LLM with image and prompt. The input of the model is the visual frame and
the prompt. The output of the model is the high-level action selection.

Figure 6. The flow diagram of the ‘High-level Reasoning’ module. It illustrates how the proposed
LLM-based agent integrates visual and olfactory sensory observations to make high-level navigation
behavior decisions.

The implemented reasoning module performs two primary visual reasoning tasks:
(1) Finding odor source location information in the visual frame, i.e., odor source location
or possible odor source direction; and (2) selecting appropriate ‘vision-based’ navigation
behavior, i.e., forward, leftward, or rightward movement, to directly approach the odor
source location. Otherwise, it analyzes the olfaction description and select either the
‘follow odor’ or ‘find odor’ navigation behavior. If a valid odor source object is later
identified visually, the system switches back to vision-based navigation again. Lastly, the
‘action decoder’ extracts the output navigation behavior from the LLM and passes it to the
‘Low-level Action’ module.
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3.4. Low-Level Action Module

The proposed algorithm has three high-level navigation behaviors: ‘obstacle-avoid’,
‘vision-based’, and ‘olfaction-based’ navigation behaviors. Of these, the ‘obstacle-avoid’
behavior is triggered directly if the LDS reading indicates that the robot is approaching an
obstacle. The ‘vision-based’ and the ‘olfaction-based’ navigation behaviors are selected by
the ‘High-level Reasoning’ module. The ‘Low-level Action’ module then translates those
high-level behaviors into the low-level action vector

a = [vc, ωc], (2)

where vc is the linear velocity (m/s) and ωc is the angular velocity (rad/s). The action
vector is transmitted to and directly executed by the mobile robot.

‘Obstacle-avoid’: This behavior is activated when a nearby obstacle is detected by
the onboard LDS. The ‘obstacle-avoid’ behavior directs the robot to navigate around the
obstacle without deviating significantly from the direction the robot was following. Details
of this navigation behavior are outlined in our previous paper [21].

‘Vision-based’: This is a class of behaviors that are selected and returned from the
‘High-level Reasoning’ module. The core strategy of vision-based navigation is to keep the
detected target in the middle of the image. If the ‘High-level Reasoning’ module selects
‘vision-based navigation’ behavior, it returns one of three values for ‘behavior’—‘front’,
‘left’ or ‘right’—indicating if the robot should approach straight ahead or move towards the
right or left to approach the odor source.

ωc =


0 if action = ‘Front’;
constant if action = ‘Left’;
−constant if action = ‘Right’.

(3)

Equation (3) is used by the ‘Low-level Action’ module for calculating linear and
angular velocities, where the velocities are fixed as constant values. This means if ‘behavior’
is ‘front’, the robot will go straight ahead with a constant linear velocity without any
angular velocity. If ‘behavior’ is returned as ‘right’ or ‘left’, the robot will execute both
constant linear and angular velocity to rotate to the right or left to face the odor source.

‘Olfaction-based’: Finally, we utilize the moth-inspired ‘surge’ movement for imple-
menting the high-level ‘follow odor’ behavior, and the ‘casting’ movement for implement-
ing the high-level ‘find odor’ behavior [72]. Figure 7 shows the moth-inspired behaviors.
In the ‘surge’ behavior, the robot moves upwind toward the odor source. In ‘casting’, the
robot moves across wind to increase the likelihood of encountering odor plumes.

(a) Moth Behaviors (b) Follow Odor (c) Find Odor

Figure 7. (a) Moth mate-seeking behaviors. This figure was retrieved from [73]. (b) Moth-inspired
‘surge’ and (c) ‘casting’ navigation behaviors.

Equation (4) shows the target heading ψc calculation for the two behaviors. Angular
velocity ωc is then adjusted to achieve the target heading ψc.

ψc =

{
φInertial + 180 if action = ‘Follow Odor’;
φInertial + 90 if action = ‘Find Odor’.

(4)
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It should be noted that we used a reactive method due to its simplicity and lower
computational cost compared to engineering-based methods (such as those involving
mapping or memory). Adding mapping and memory would require more computational
resources and could slow down the decision-making process. However, it should be noted
that engineering-based methods can be implemented in the proposed ‘Low-level Action’
module without requiring any changes to the existing ‘High-level Reasoning’ module.

4. Experiment
4.1. Experiment Setup

The focus of the experiment is to test if the proposed navigation algorithm can reason
over vision and olfaction sensory inputs to determine the actions to localize an unknown
odor source. Figure 8 shows the search area used for the OSL navigation experiment. The
search area has an obstacle in the middle to simulate complex indoor environments. There
are multiple candidate odor source objects placed in the upwind area. The LLM must use
reason to determine the correct odor source object from the candidate objects. The search
area has an obstacle in middle. The purpose of the obstacle is to mimic constructed indoor
environments, such as household environments, office environments, etc. The obstacle also
initially prevents vision of the odor source. In order to succeed in localizing the odor source
in this search area, the navigation algorithm must integrate vision and olfaction sensing
and reason over them effectively. In this project, we define ‘unidirectional airflow’ as the
condition when only one fan is used, and ‘non-unidirectional airflow’ as the condition
when two perpendicularly placed fans are used. The odor concentration threshold is set to
the background concentration, which is determined when the chemical sensor is not within
the alcohol plume environment. The task is concluded successfully if the robot reaches
within 0.8 m of the odor source within 120 s. It is important to note that this work primarily
focuses on the design of the navigation algorithm. The key research question we aim to
address is how to process multi-modal sensory inputs to compute robot actions that guide
the robot toward the odor source. Source declaration in this work is defined by a distance
threshold, meaning that reaching the threshold is considered as detecting the source.

(a) Search Area (b) Search Area Schematic

Figure 8. (a) Figure of the search area. The size of the search area is 8.2 m × 3.3 m. The odor
source is a humidifier that generates ethanol plumes. An obstacle prevents vision of the plume
initially and obstructs navigation. Two perpendicular electric fans are used to create unidirectional
or non−unidirectional airflow. There are objects to test the visual reasoning capability of the LLM
model. (b) Schematic diagram of the search area. We selected four different robot initial positions in
the downwind area in the repeated tests.

4.2. Comparison of Algorithms

To validate the proposed OSL navigation algorithm, we have compared it with single-
modality and multi-modality OSL navigation algorithms. Single-modality OSL navigation
algorithms include the ‘olfaction-only’ and the ‘vision-only’ navigation algorithms. We also
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compared the performance of the multi-modal ‘Fusion’ navigation algorithm [21]. Unlike
the visual reasoning-based navigation of the proposed LLM-based algorithm, the Fusion
navigation algorithm utilizes a custom-trained ‘You Only Look Once version 7’ (YOLOv7)
model to detect and then to navigate to the visible odor plumes. The primary goal of our
experiments is to demonstrate that the proposed multi-modal OSL navigation algorithm
outperforms single-modal algorithms, which include both olfaction-based and vision-based
approaches. Most recent advancements in OSL are single-modal algorithms, primarily
olfaction-based. For this study, we selected a representative olfaction-based algorithm,
the moth-inspired method, due to the availability of its control code, which allowed us to
implement it in our robotic agent.

The olfaction-only navigation algorithm comprises olfaction-based ‘surge’ and ‘casting’
behaviors with the ‘obstacle-avoid’ navigation behavior discussed in Section 3.4. The
algorithm follows ‘obstacle-avoid’ behavior to navigate around the obstacles. In absence of
obstacles, the algorithm tests the current odor concentration level against a threshold. If
the detected plume concentration is below the threshold, the algorithm follows ‘casting’
behavior to maximize the chance of finding greater plume concentration. Otherwise, the
algorithm follows ‘surge’ behavior to approach the upwind odor source.

In the vision-only navigation algorithm, the robot uses the ‘casting’, ‘vision-based’,
and ‘obstacle-avoid’ behaviors discussed in Section 3.4. The algorithm follows ‘obstacle-
avoid’ behavior to navigate around obstacles. Otherwise, the algorithm checks if there is
any potential odor source cue in the visual frame. The algorithm follows ‘vision-based’
navigation if it finds visual cues towards the odor source. Otherwise, the algorithm moves
perpendicular to the wind direction, resembling a ‘zigzag’ exploration movement, to
increase the chance of detecting plume vision

The Fusion navigation algorithm utilizes a hierarchical control mechanism to select
‘surge’, ‘casting’, ‘obstacle-avoid’, or ‘vision-based’ navigation behaviors. In contrast to
the ‘vision-based’ navigation behavior of the proposed LLM-based navigation algorithm,
that uses zero-shot visual reasoning to identify a potential odor source object in the visual
frame, the ‘vision-based’ navigation of the ‘Fusion’ algorithm is triggered if a custom
trained YOLOv7 model detects a visible odor plume in the visual frame. In that case, the
‘vision-based’ navigation behavior tries to approach the visible plume directly.

The four navigation algorithms were tested in both unidirectional and non-unidirectional-
airflow environments. For each environment, we used four distinct starting positions to
demonstrate that our proposed method performs well from various initial positions and
orientations, and four test runs were recorded from each starting position. Our experiments
focus on analyzing how unidirectional and non-unidirectional flow environments impact
the performance of each navigation algorithm, rather than the influence of the robot’s
starting point. While only four trials were conducted per method for each starting point,
each method was tested 16 times per environment (unidirectional or non-unidirectional),
exceeding the commonly accepted trial range of 10–15. In our statistical analysis, we
evaluate the effects of airflow environments and navigation methods, not the starting
points. We conducted a total of 128 test runs, covering two airflow scenarios, four navigation
algorithms, and 16 trials per scenario.

4.3. Robot Platform

Figure 9a shows the robotic platform used in the real-world experiments. We used
Turtlebot3 as the base for our robotic agent. In addition to the onboard vision sensors,
we added an anemometer and a chemical sensor for olfactory detection. These sensors
included the following:

• Camera: Raspberry Pi Camera v2, that can record 1080p video at 30 frames per second
(FPS). This was used to capture the robot’s egocentric vision frame.

• LDS: LDS-02, that can detect 160–800 mm distance over 360 degrees. This was used to
detect distances from obstacles.
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• Anemometer: WindSonic, Gill Inc., that can sense 0–75 m/s wind over 360 degrees.
This was used to record wind direction and speed.

• Chemical sensor: MQ3 alcohol detector, that can sense 25–500 ppm alcohol concentra-
tion. This was used to record odor concentration.

Figure 9b illustrates the system configuration, where the robot operating system (ROS)
connects the robot platform to a remote computer over a local area network. The ROS
publishes the sensor readings from the robot, which are subscribed to by the navigation
algorithm running on the remote computer. The algorithm uses these readings to calculate
and publish heading commands that the robot then executes. The robot subsequently
collects a new set of sensor readings, and the cycle continues until it locates the odor source.
The robot platform development is detailed further in our previous paper [74].

(a) Mobile Robot (b) System Configuration

Figure 9. (a) The robot platform includes a camera for vision sensing and a chemical sensor and an
anemometer for olfaction sensing. (b) The computation system consists of the robot platform and a re-
mote PC. The dotted line represents a wireless link and the solid line represents a physical connection.

4.4. Sample Run

Figure 10 shows the robot trajectory and snapshots of a successful sample experiment
run with the proposed algorithm in a unidirectional airflow environment. In this run, the
robot was following ‘olfaction-based’ crosswind navigation at t = 5 s. At t = 7 s, it was
sensing sufficient odor concentration and following ‘olfaction-based’ upwind navigation.
At t = 28 s, the robot was following ‘obstacle-avoid’ navigation. Afterward, it followed
‘olfaction-based’ upwind and ‘vision-based’ navigation to reach the odor source at t = 119 s.

Figure 10. Trajectory graph of a successful sample run with the proposed multi-modal LLM-based
OSL algorithm in unidirectional airflow environment. The navigation behaviors are color-separated.
The obstacle is indicated by an orange box, and the odor source is represented by a red point with the
surrounding circular source declaration region.
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We then extracted the robot’s egocentric visual frames and chemical readings and used
them to query the ‘High-level Reasoning’ module for navigation decisions with detailed
reasoning output. Figure 11 illustrates prompt input and reasoning output by the ‘GPT-4o’
model from six time steps of the sample run. It should be noted that in this project, the
LLM is instructed to navigate towards a single odor source in a zero-shot manner; no
model training is involved in this process. The model does not provide a prioritized list of
potential odor sources or any confidence scores. This is because in this work, the LLM is
not commanded to choose which object is the odor source, but to choose which action the
robot should select to approach the odor source.

(a) Query 1 (b) Query 2

(c) Query 3 (d) Query 4

(e) Query 5 (f) Query 6

Figure 11. Examples of ‘environment sensing’ and ‘reasoning output’ by the GPT-4o model.

In query 1, the model finds no possible odor source in the visual frame. Then, it checks
the odor concentration and finds it to be less than the predefined threshold. Thus, the
model outputs ‘find odor’ navigation behavior. In query 2, there was still no possible
odor source in the visual frame. However, the model output was ‘follow odor’ navigation
behavior as the odor concentration was above the threshold. In query 3, the model could
not detect any clear odor source. But it detected the fan and deduced that approaching the
fan could lead the robot closer to the odor source. In query 4, the model found a potential
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odor-emitting device in the right part of the visual frame and selected vision-based ‘move
right’ navigation behavior. In query 5 the model found potential odor source objects, and
decided to approach the humidifier based on its semantic understanding. In query 6, the
model correctly detected the humidifier as the odor source and selected vision-based ‘move
forward’ navigation behavior. Based on the navigation behaviors, the ‘Low-level Action’
module calculated proper linear and angular velocities for the robot. It should be noted
that during experiment runs, we instructed the LLM not to generate textual output of the
chain-of-thought reasoning to reduce the inference time. This brought the inference time
down to under 3 s for most multi-modal queries.

4.5. Repeated Test Results

Figure 12 shows the trajectories of the four algorithms in a unidirectional airflow envi-
ronment, and Figure 13 shows the trajectories of the four algorithms in a non-unidirectional
airflow environment. Each algorithm was tested from four fixed starting positions, and
four trials were recorded from each starting position. Table 2 shows the performance
comparison of the four navigation algorithms in a unidirectional airflow environment, and
Table 3 shows the performance comparison in a non-unidirectional airflow environment.

Table 2. Comparison of search time (mean and std. dev.), traveled distance (mean and std. dev.), and
success rates of the four tested algorithms in unidirectional airflow environment.

Navigation
Algorithm

Search Time (s) Traveled Distance (m)
Success Rate
↑Mean

↓
Std. Dev.
↓

Mean
↓

Std. Dev.
↓

Olfaction-only 98.46 11.87 6.86 0.35 10/16

Vision-only 95.23 3.91 6.68 0.27 8/16

Fusion 84.2 12.42 6.12 0.52 12/16

Proposed LLM-based 80.33 4.99 6.14 0.34 16/16

Table 3. Comparison of search time (mean and std. dev.), traveled distance (mean and std. dev.), and
success rates of the four tested algorithms in non-unidirectional airflow environment.

Navigation
Algorithm

Search Time (s) Traveled Distance (m)
Success Rate
↑Mean

↓
Std. Dev.
↓

Mean
↓

Std. Dev.
↓

Olfaction-only - - - - 0/16

Vision-only 90.67 - 6.69 - 2/16

Fusion 97.79 4.69 7.08 0.53 8/16

Proposed LLM-based 85.3 5.03 6.37 0.31 12/16

In a unidirectional airflow environment, both the olfaction-only and the vision-only
navigation algorithms performed poorly compared to the Fusion and proposed LLM-based
navigation algorithms in terms of both mean search time and mean traveled distance.
The proposed navigation algorithm performed better than all other algorithms in terms
of success rate and mean search time. In a non-unidirectional airflow environment, the
olfaction-only navigation algorithm failed to localize the odor source in all trial runs. The
proposed navigation algorithm again outperformed other algorithms in terms of mean
search time, mean distance traveled, and success rate.
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(a) OO from pos 1 (b) OO from pos 2 (c) OO from pos 3 (d) OO from pos 4

(e) VO from pos 1 (f) VO from pos 2 (g) VO from pos 3 (h) VO from pos 4

(i) Fusion from pos 1 (j) Fusion from pos 2 (k) Fusion from pos 3 (l) Fusion from pos 4

(m) LLM from pos 1 (n) LLM from pos 2 (o) LLM from pos 3 (p) LLM from pos 4

Figure 12. Robot trajectories of repeated tests in unidirectional airflow environment: (a–d) ‘olfaction-
only’ (OO); (e–h) ‘vision-only’ (VO); (i–l) ‘vision and olfaction fusion’ (Fusion); and (m–p) ‘LLM-
based’ (LLM) navigation algorithms.
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(a) OO from pos 1 (b) OO from pos 2 (c) OO from pos 3 (d) OO from pos 4

(e) VO from pos 1 (f) VO from pos 2 (g) VO from pos 3 (h) VO from pos 4

(i) Fusion from pos 1 (j) Fusion from pos 2 (k) Fusion from pos 3 (l) Fusion from pos 4

(m) LLM from pos 1 (n) LLM from pos 2 (o) LLM from pos 3 (p) LLM from pos 4

Figure 13. Robot trajectories of repeated tests in non-unidirectional airflow environment:
(a–d) ‘olfaction-only’ (OO); (e–h) ‘vision-only’ (VO); (i–l) ‘vision and olfaction fusion’ (Fusion);
and (m–p) ‘LLM-based’ (LLM) navigation algorithms.
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While the olfaction-only navigation algorithm had a 62.5% success rate in unidi-
rectional airflow, the success rate went down to 0% in the non-unidirectional airflow
environment. The algorithm relies upon sufficient odor concentration detection and upon
the assumption that the odor source is in the upwind direction. Complex airflow from
multiple directions affects both of these aspects: it can dilute odor concentration, and non-
unidirectional airflow from multiple directions can prevent OSL by upwind navigation.

The vision-based algorithm can only navigate towards the odor source if it is within
its visual frame. The algorithm utilized crosswind movement, that resembles ‘zigzag’
like exploration movement perpendicular to the wind direction. This allowed the model
to acquire initial plume vision in a unidirectional airflow environment. However, the
algorithm often became sidetracked and lost plume vision while avoiding obstacles in the
environment. This resulted in a 50% success rate. However, in a non-unidirectional airflow
environment, the casting movement resulted in chaotic exploration of the environment.
Thus, the success rate of the algorithm dropped down to 12.5%.

Both the Fusion navigation algorithm and the proposed LLM-based navigation algo-
rithm utilize both vision and olfaction for localizing the odor source. Without proper visual
cues, both of these algorithms follow olfaction-based crosswind movement to find the odor,
and olfaction-based upwind movement to approach the odor source. Thus, their perfor-
mance dropped in non-unidirectional airflow environments compared to unidirectional
airflow environments. The Fusion navigation algorithm utilizes a deep learning-based
vision model and follows a visible odor plume. In contrast, the proposed LLM-based
navigation algorithm can reason over the vision frame to deduce the possible odor source
direction. Thus, it can follow efficient vision-based navigation even without clearly dis-
cerning visible odor plumes or odor sources. In a unidirectional airflow environment, the
proposed algorithm outperformed the Fusion algorithm in terms of both average success
rate (100% vs. 75%) and average search time (80.3 s vs. 84.2 s). In a non-unidirectional
airflow environment, the proposed multi-modal LLM-based navigation algorithm far ex-
ceeded the performance of the Fusion navigation algorithm in terms of average success
rate (75% vs. 50%), average travel time (85.3 s vs. 97.7 s), and average traveled distance
(6.4 m vs. 7.1 m).

Figure 14 shows the Tukey’s honestly significant difference test (Tukey’s HSD) results
among the success rates of the four algorithms. In the six one-to-one comparisons, the null
hypothesis, H0, states that the difference in the mean success rates of the two algorithms is
not statistically significant with FWER of 5%. The results show that the null hypothesis is
not rejected for comparisons with similar sensory modality algorithms, i.e., olfaction-only
vs. vision-only and Fusion vs. LLM-based navigation algorithms. However, the differences
are statistically significant for the comparison among mixed-modality algorithms. This
indicates that the success rates of multi-sensory-modality-based navigation algorithms are
statistically superior to the single-sensory-modality-based navigation algorithms.

Figure 14. Mean differences of success rates of the four navigation algorithms. The positive differences
are statistically significant at family-wise error rate (FWER) of 5%.
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5. Limitations and Future Work

One important limit for the LLM-based agent is the inference time. In our application,
the inference time is three seconds. This can be reduced by using a smaller LLM. Secondly,
our evaluation field is on a small scale. This field is sufficient to validate our proposed
work, but a larger search area is required to test real-world-imitating applications. In
the future, the 2-D OSL method discussed in this paper can further be extended to 3-D
OSL scenarios using drones in larger search areas. Experiments can also be extended to
actual environments, such as office or household environments. Reasoning-based vision
processing can also be used to localize odor sources in 3-D spaces after initial plume
recognition. The single-agent OSL discussed here can also be extended to multi-agent odor
source localization or monitoring tasks over a larger area in the future. Example applications
of multi-agent 3-D OSL include monitoring wildfire outbreaks in large forests or locating
chemical leak sources in an indoor setting. Semantic search is another future direction,
where next-generation olfaction sensors could detect the type of odor (e.g., chemical leak,
food odor). In this case, the ‘High-level Reasoning’ module could search for specific
odor sources in the visual field based on the detected odor type. Additionally, a more
sophisticated anemotactic method could be implemented in the ‘Low-level Action’ module
for more effective olfactory-based navigation. A more sophisticated source declaration
algorithm that can rank potential odor sources could be incorporated with this model.
Finally, reliance on LLM-based reasoning could be minimized by generating a semantic
representation of the environment. In this approach, the LLM would only be queried
when the robot senses unexplored parts of the environment. The semantic representation
could then be used by alternative control mechanisms, such as reinforcement learning, for
OSL navigation.

6. Conclusions

This paper presents a novel methodology to integrate vision and olfaction sensing in
robotic OSL. The dual-modality integration allows the localization of odor sources even if
olfaction or vision sensing is disrupted by environmental complexities. The innovation of
this paper is the utilization of multi-modal LLM for zero-shot OSL navigation reasoning.
We introduced a ‘High-level Reasoning’ module that generates a multi-modal prompt from
robot sensor readings. This prompt is used to query the multi-modal LLM. The reasoning
output of the LLM is then decoded and passed to the ‘Low-level Action’ module. The
module then calculates commands that can be executed by the robot. To validate the
performance of the proposed algorithm, we implemented the algorithm in a real-world
environment. The environment’s non-unidirectional airflow challenges olfaction sensing,
and obstacles and odor source candidate objects that challenge visual reasoning. We
compared the performance of the proposed algorithm to single-sensory-modality-based
‘olfaction-only’ and ‘vision-only’ algorithms, and multi-sensory-modality-based ‘Fusion’
navigation algorithms.

• Our proposed method is a multi-modal navigation algorithm that integrates olfactory
and visual sensors. Unlike single-modal algorithms, such as the moth-inspired navi-
gation, our approach leverages visual inputs to enhance performance. For instance,
when the robot visually identifies the odor source, it can approach it directly, signifi-
cantly improving the success rate in locating odor sources in both unidirectional and
non-unidirectional flow environments. Moth-inspired navigation relies primarily on
wind measurements, achieving high success rates in unidirectional flows (10/16 in
Table 2) but struggling in non-unidirectional flows (0/16 in Table 3). In contrast, with
the help of visual detection, our method demonstrates robust performance across both
scenarios. Additionally, in unidirectional search environments, the proposed method
reduces the average search time by 18.1 s compared to the ‘olfaction-only’ navigation
algorithm, and 14.9 s compared to the vision-based algorithm. In non-unidirectional
search environments, the proposed method shortens the average search time by 5.37 s
relative to the vision-based algorithm.
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• Furthermore, compared to the rule-based vision and olfaction fusion algorithms
(Fusion in Tables 2 and 3), our approach incorporates the reasoning and semantic
understanding capabilities of LLMs. This allows for more intelligent decision making
beyond predefined rules. For example, when presented with an electrical fan (query
3 in Figure 11), the LLM can deduce that the odor source is likely near the fan—an
inference unattainable by rule-based Fusion algorithms, which rely solely on recogniz-
ing visible odor plumes. As a result, compared to the Fusion navigation algorithm, the
proposed method reduces the average search time by 3.87 s in unidirectional search
environments, and by 12.49 s in non-unidirectional search environments.

The results also show that the success rates of the multi-sensory algorithms are signifi-
cantly better than the success rates of single-sensory-modality-based algorithms. Overall,
the results validate the proposed LLM-based vision and olfaction integration for OSL. In
the future, this algorithm can be further expanded for multi-agent three-dimensional OSL
environments for both indoor and outdoor OSL tasks. Furthermore, the method can be
augmented with reinforcement learning methods to reduce computational costs.
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