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Abstract—This paper presents an engineering-based chemical
plume tracing (CPT) method for using on an autonomous under-
water vehicle (AUV) to locate a chemical source in an underwater
environment with obstacles. Fundamental steps of the proposed
method are twofold. Firstly, the estimated source location is
obtained by a source likelihood map, which is generated based
on a partially observable Markov decision process (POMDP).
Secondly, after the estimated source location is determined, the
A-star path planning algorithm is used to generate the shortest
path toward the target while avoiding obstacles. Simulation
results validate the proposed method in environments with either
laminar or turbulent flow conditions. Comparing with other
chemical source mapping algorithms, such as the hidden Markov
model (HMM) based method, the POMDP-based source mapping
algorithm converges to the correct chemical source location
in a faster rate. Besides, the A-star path planning algorithm
enables the AUV to avoid obstacles and the local minima issue
in the traditional path planning algorithm, such as the artificial
potential field.

Index Terms—Chemical Plume Tracing, Partially observable
Markov decision process, autonomous underwater vehicle, A-star
path planning

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are versatile and
play an important role in marine surveys [1]. Some surveys,
e.g., locating underwater hydrothermal vents, require AUVs
with chemical sensing abilities to trace chemical plumes and
find chemical sources. The procedure of tracing chemical
plumes is termed chemical plume tracing (CPT), which is a
significant and essential step in a chemical source localization
(CSL) mission.

The most straightforward CPT strategy is the chemotaxis
method [2], which commands the robot to move along the gra-
dient of the plume concentration. A common implementation
of this method is to install a pair of chemical sensors on the
left and right side of a robot, and the robot is commanded to
steer toward the side with the higher concentration [3]. Many
experiments [4]–[7] have proved that the chemotaxis method
is effective when the odor source is placed in a very weak or
no turbulent (i.e., low Reynolds numbers) environment, where
the plume concentration is a smooth and stable signal.

However, the chemotaxis method is not feasible if an odor
source is placed in a turbulent environment, where plumes

are conjugated into packets and the plume concentration is an
intermittent and patchy signal [8]. In that case, the chemotaxis
method often misleads a robot to wrong source locations. To
solve this problem, the anemotaxis method, which is inspired
by mate-seeking behaviors of male moths, was proposed [9]. A
male moth could successfully locate a female moth by tracking
pheromones emitted by the female over a long distance [10],
[11] and even overcoming obstacles on the way such as
forests [12]. To complete this task, a male moth will fly
upwind (surge) when detects pheromone plumes and traverse
the wind (casting) if pheromone plumes are absent. Li et
al. [13] implemented the anemotaxis method on an AUV to
search for an underwater chemical source. An adaptive mission
planner (AMP) inspired by the ’surge/casting’ model in the
anemotaxis method was designed to mimic moth behaviors.
In the surge behavior, the AUV was commanded to move up-
flow when it was in the plume, and when it left the plume,
it steered an offset angle to change its heading and moved
forward for a while. If the AUV re-contacted the plume, it
went back to the surge behavior; otherwise, it performed the
casting behavior. Results from water experiments [14]–[16]
showed that the AUV could successfully locate the chemical
source by implementing the anemotaxis method.

Another type of CPT strategies is the engineering-based
method, which estimates source locations by generating a
source likelihood map and guides the robot toward the es-
timated location (i.e., the area with the highest probability of
containing the chemical source) with path planning algorithms.
Methods that produce a source likelihood map are various.
For instance, Pang and Farrell [17] proposed an algorithm
to calculate probabilities of the plume detection and non-
detection events based on a Gaussian plume model, and
these probabilities were fused by a Bayesian-based method to
iteratively update the source likelihood map. Other numerical
algorithms and models were also feasible to recursively update
the source likelihood map, such as the particle filter [18],
the hidden Markov model (HMM) [19], and the model of a
partially observable Markov decision process (POMDP) [20].
After obtaining a source likelihood map, a path planning
algorithm that guides the robot moving toward the target
is necessary. Pang and Zhu [21] proposed a path planning



algorithm based on the artificial potential field, which directs
the robot moving to the area with the highest probability of
containing the odor source. In this method, the local minima
issue, i.e., the robot is trapped when the attractive force equals
to the repulsive force and with the opposite direction, was
avoided since there were no obstacles in the search area.
Li et al. [22] proposed a route planning method based on
the estimated plume trajectories. This method first estimates
trajectories of plumes based on a Gaussian plume diffusion
model, and then the robot is commanded to move to the
area where thick plumes exist. Vergassola, Villermaux, and
Shraiman [23] presented the ’infotaxis’ method, which utilized
information entropies to guide the robot searching for an odor
source. The robot is commanded to move toward the direction
that mostly reduces the information uncertainty. Experiment
results show that the robot trajectory in this method is similar
to the anemotaxis method.

In this paper, we present an engineering-based CPT strategy
that combines the POMDP-based chemical source mapping
and the A-star path planning algorithms. The framework of a
POMDP is suitable to model a CSL mission: the AUV (agent)
does not know the location of the chemical source, but it
can estimate the source location through detection events. We
define the hidden state space as the source location, which
is implicit and clouded to the AUV. Belief states, which
originally describe the probability of the agent being in a state,
are adapted to represent the likelihood of the chemical source
being located in an area. The estimated source location is
selected as the area that has the highest belief state value. After
that, the A-star algorithm generates the shortest path from the
AUV’s current location to the estimated source location while
avoiding obstacles. During the course of the AUV following
the path, if the source likelihood map updates a new target
location, the A-star path planner will re-generate a new path
to guide the AUV moving to the new target. The CSL task
is considered as successfully completed if the AUV correctly
declares the chemical source location.

II. METHODOLOGY

A. The Framework of a CSL Mission

It is commonly accepted that a CSL task can be divided
into three phases, namely plume finding, plume tracing, and
source declaration [24]. Fig. 1 shows the framework of a CSL
mission with the proposed CPT strategy. In the first stage,
the AUV searches the presence of plumes and tries to get
the plume detection in the first time. We adopted a ’zigzag’
method proposed in [13] as the initial search strategy. After the
AUV detects plumes for the first time, it switches to the second
stage: tracing plumes as cues to find the chemical source.
The location of the chemical source is estimated using the
POMDP-based source mapping algorithm (section II-C) while
the path toward the estimated source location is generated by
the A-star path planning algorithm (section II-D). After the
mapping algorithm converges to an area, the AUV declares
the chemical source location and completes the CSL mission.

Fig. 1. The framework of a CSL mission with the proposed CPT strategy

Fig. 2. Chemical plumes in an underwater environment

B. The Simplified Search Area

As shown in Fig. 2, in an underwater environment, chemical
plumes mainly disperse at a certain level due to the buoyancy
[14]. Thus, the underwater CSL mission could be considered
as a two-dimensional (2-D) searching problem. In the project,
the search area is simplified as a 2-D rectangular grid, which
has m segments in the horizontal direction and n segments in
the vertical direction. Fig. 3 shows the proposed search area.
A vector C = [C1, C2, C3, ..., Cmn] is used to store positions
of cells. It can also be used to represent AUV positions: when
the AUV enters a cell, its position is approximated by the cell
that it is occupied.

Fig. 3. The simplified search area in the CSL mission



C. The POMDP-based Source Mapping Algorithm

The POMDP-based source mapping algorithm is adopted in
this project [20]. A traditional POMDP model [25] is defined
by a tuple (S,A,Ω, P,O, r, b0) as shown below:

• S is a state space;
• A is an action space;
• Ω is an observation space;
• P are transition probabilities between states;
• O are observation probabilities;
• r is a reward function defined on the transitions;
• b0 is an initial probability distribution over states.

In this project, AUV’s actions are determined by the path
planning algorithm, thus, action related parameters, i.e., reward
functions r and the action space A, are redundant. The
remainder of this section illustrates a method of adapting each
element in a POMDP model into a CSL mission in order to
generate a source likelihood map.

1) State Space: States in a traditional POMDP model are
hidden to the agent, i.e., the agent does not know which state
it is in. In a CSL mission, the AUV does not know the actual
chemical source location. Thus, we defined the state space S
as a Boolean vector c = [c1, c2, ..., cmn], which stores the
information of whether or not a cell containing a chemical
source: if a cell has a source, the corresponding Boolean value
of the cell in c is 1; otherwise, it is 0.

2) Observation Space and Probabilities: When the AUV
enters a cell Cj , it could detect or not detect chemical plumes.
Therefore, we defined two events in the observation space
Ω = {d, d̄}, namely plume detection d and plume non-
detection d̄. To calculate the probability of the AUV detect-
ing or not detecting chemical plumes, i.e., the observation
probabilities O of two observation events, we first assume
that the chemical source continuously releases plumes in the
water with a constant rate. Second, the AUV only records flow
measurements h time units ahead, i.e, if the current time is tk,
the available flow record history is from tk − h to tk. Then,
the probability of the AUV detecting plumes in a cell Cj at
the current time tk due to a single chemical filament release
in a cell Ci at time tl is defined as [17]:

pij(tl, tk) =
LxLy

2π(tk − tl)σxσy
e
− δix(tl,tk)2

2(tk−tl)σ2x e
−
δiy(tl,tk)2

2(tk−tl)σ2y , (1)

where [σx, σy] stands for the natural plume diffusion distances
on x and y directions without external flows; δix(tl, tk) =
Cjx − Cix − sx(tl, tk) and δiy(tl, tk) = Cjy − Ciy −
sy(tl, tk) represent the difference between the distance from
the AUV’s cell Cj to the estimated source cell Ci and the
distance of the odor filament advection caused by the flow
([sx (tl, tk) , sy (tl, tk)]); Lx and Ly are length and width of
a cell respectively. Let µ donate the probability of the AUV
successfully detecting plumes given that there are detectable
plumes at the chemical sensor position, the probability of the
AUV detecting plumes in cell Cj at time tk due to a single
chemical filament release can be represented as µpij(tl, tk).

Since the plume detection and non-detection events are com-
plementary, the probability of the AUV not detecting plumes is
1−µpij(tl, tk). Based on our first assumption, the probability
of the AUV not detecting plumes in cell Cj if the source
continually releases plumes from time tf to the current time
tk is expressed as:

γij (tf , tk) =

k−1∏
l=f

[1− µpij (tl, tk)] , (2)

where tf can be expressed as tf = max(0, tk − h + 1).
After the probability of plume non-detection is determined, the
probability of detecting plumes in a cell Cj at time tk, i.e., the
probability of plume detection, is expressed as 1−γij (tf , tk).

In summary, observation probabilities of plume detection (d)
and plume non-detection (d̄) events are presented as below:

O(cj , ok) =

{
1− γij(tf , tk) ok = d

γij(tf , tk) ok = d̄
. (3)

3) State Transition Probability: The location of the chemi-
cal source in the search area is static in our project. Therefore,
the hidden state c is also static. If the source location is in a
cell Ci, the transition probability can be expressed as:

P (c′i|ci) =

{
1 c′i = ci

0 c′i 6= ci
. (4)

where c′i is the new state.
4) Belief States: In a traditional POMDP model, a belief

state b(s) is the probability of the agent being in a state s. In
the domain of a CSL mission, a belief state is interpreted as
the likelihood of the AUV believes that there is a chemical
source in a cell. The updating law for a belief state in an
original POMDP model is defined as [26]:

b(s′) =
O(a, s, o)

∑
s∈S P (s′|s, a)b(s)∑

s∈S
∑

s′∈S O(a, s′, o)P (s′|s, a)b(s)
, (5)

where s′ is the new state after the agent performs the action
a; O(a, s, o) is the observation probability; P (s′|s, a) stands
for the state transition probability. Combine Eqn. 3, Eqn. 4,
and Eqn. 5, we get:

b(c′i) =



(1− γij(tf , tk))b(ci)∑mn
i=1 (1− γij(tf , tk))b(ci)

ok = d

γij(tf , tk)b(ci)∑mn
i=1 γij(tf , tk)b(ci)

ok = d̄

. (6)

The initial belief state b0 is defined as 1/mn if the AUV
does not have the prior information of the source location.
Calculating belief states for all cells and putting them on
corresponding cell locations in the search area, a source
likelihood map is obtained, which can be represented as
[b(ci)]

i=mn
i=1 . The estimated source location is the cell that

has the highest belief state value, i.e., the cell has the highest
probability of containing a chemical source. The location of
this cell is passed to the online path planner as a temporary
goal until the next belief state update.



D. The A-star based Online Path Planning Algorithm

The A-star algorithm [27] is a widely used path planning
method in the process of finding the shortest path in a node-
based map. It generates a path between a start and a goal that
minimizes the function:

f(n) = g(n) + h(n), (7)

where n = (nx, ny) is a node on the path, g(n) represents the
cost of the path from the starting point to a node, and h(n) is
the heuristic function from the a node to the goal.

In our application, the search area is divided into mn cells,
and each cell is considered as a node. The starting point is
the cell that the AUV currently occupies, and the goal is the
estimated source location, which is produced from the source
likelihood map. The cost function is defined as:

g(n) =

{
1000 n ∈ B̄
0 n ∈ B

, (8)

where B̄ is the set of cells that are defined as obstacles, and B
is a set of other cells. Note that, B̄ ∪B comprises the whole
search area. The heuristic function is defined as the Manhattan
distance [28]:

h(n) = |nx −Gx|+ |ny −Gy|, (9)

where (Gx, Gy) is the coordinate of the goal.
When planning the path, the A-star path planner considers

five possible directions, namely left, left-forward, forward,
right-forward, and right. The output of the path planner is a
series of node (cell) coordinates, which is termed the planned
path. Once the source mapping algorithm updates a new
estimated source location, the planned path will be updated
correspondingly. The AUV follows the planned path until it is
updated. The chemical source is declared to be found if the
source likelihood map converges, i.e., the estimated source
location produced from the source likelihood map does not
change over 30 seconds.

III. SIMULATION DESIGNS

The simulation program, in which the proposed method is
evaluated and verified, has three designed components: the
search area, AUV dynamics in a 2-D plane, and chemical
plumes.

A. Search Area

In the simulation program, the search area is defined as
a rectangle with a size of 100 × 100 m2. It is divided into
1000 cells with 40 segments in the horizontal direction and 25
segments in the vertical direction, and the size of a single cell
is 2.5×4 m2. The initial position of the AUV is at (24, 2), and
the actual chemical source is located at (8, 12). The obstacle is
defined as a rectangular block (20× 7.5 m2), which is placed
at the right side and 17.5 m away from the plume source. Fig.
4 shows the designed search area in the simulation program.

Fig. 4. The designed search area in the simulation program

Fig. 5. X and Y forms the global frame; x and y forms the local frame.
AUV’s heading (ϕ) is the angle rotating from the X axis to x axis in a
clockwise direction. θ is the target heading. ε is the heading error, which is
calculated by ε = ϕ− θ.

B. AUV Motions Control

Two parameters, headings and velocities, are needed to
command an AUV to transport from the current location
(Xc, Yc) to the target (Xt, Yt) in a horizontal plane. Since the
AUV moves in a constant velocity (2 m/s) in the simulation,
a target heading is the only variable for controlling an AUV,
which can be calculated as:

θ = arctan(
Yt − Yc
Xt −Xc

). (10)

The AUV rotates to align with the target heading when the
AUV’s current heading is not equal to it, and the heading
error (ε) is calculated as the difference between them. Fig. 5
shows the proposed heading control method.

C. Chemical Plume Model

The time-average chemical plume concentration can be
calculated based on a a Gaussian plume distribution model
[29]:

C

Cm
= exp

(
−y2

2σ2
y(x, F )

)
, (11)



where the mean flow direction is in the x direction, y is the
perpendicular distance from the centerline of plumes, C̄ and
Cm are time-average plume concentration and local centerline
concentration respectively, σy represents the plume width,
which is a function of x position and the flow F . For short-
timescale circumstances, the position of the chemical plume
advected by flows follows a random walk [17], which can be
expressed as:

Ẋ(t) = U(X, t) + N(t), (12)

where X = (x, y) is the chemical plume location, U =
(ux, uy) is the mean flow velocity, and N is a Gaussian
random process with zero mean and (σ2

x, σ
2
y) variance. By

integrating Eqn. 12, the location of the chemical plume X (tk)
at the current time tk that was released at time ts can be
expressed as:

X (tk) = X (ts) +

∫ tk

ts

U(X(τ), τ)dτ +

∫ tk

ts

N(τ)dτ. (13)

In simulations, the chemical source is fixed in a constant
position and releases N = 10 filaments per time unit dτ .
Thus, in the time interval [ts, tk], there are N(tk − ts)/dτ
filaments released with positions denoted by: P (ts, tk) =
[X(ts),X(ts + dτ/N),X(ts + 2dτ/N), ...,X(tk)]. dτ is 1 in
the simulation program.

IV. RESULTS

The proposed CPT strategy was tested in environments
with either laminar or turbulent water flows. To evaluate the
performance of the proposed method, we use Bayesian-based
and HMM-based source mapping methods as benchmarks.

A. The Environment with Laminar Flows

Fig. 7 shows source likelihood maps generated by the
POMDP-based source mapping algorithm at different times
when the chemical source is placed in an environment with
laminar water flows (mean flow [ux, uy]: [1, 0] m/s). In
the beginning, all cells are initially assigned with a uniform
probability (1/mn = 0.001) since no information about the
source location is known before performing the search process.
The AUV follows a ’zigzag’ search trajectory [13] to get the
initial contact with plumes. Fig. 7(a) reflects the initial phase
of the simulation: cells have the uniform probability (around
0.001) in red areas and have the probability of 0 in white areas.
This is because white areas are in the up flow direction of the
AUV, and since the AUV does not detect plumes, the POMDP-
based source mapping algorithm excludes the source location
from these areas, i.e., updates their probabilities to 0. After
the first plume detection, as shown in Fig. 7(b), the source
mapping algorithm narrows the possible source locations down
to up flow areas and transmits the cell’s location that has the
highest probability of containing the chemical source to the
A-star path planner, who generates the shortest path from the
AUV’s current location to the estimated target while avoiding
obstacles. In Fig. 7(d), the AUV correctly finds the source
location after three plume detection events. Fig. 7(e)-7(h)

Fig. 6. A summary of the CSL mission reported in Fig. 7. The AUV follows
the path generated from the A-star algorithm while tracing the plumes. The
AUV correctly finds the source location at the end of the mission.

present source likelihood maps at different times during the
CSL mission.

Since the estimated source location changes when the source
likelihood map updates, there are multiple planned paths out-
put from the A-star path planner during the searching proce-
dure. These planned paths are combined together to generated
an overall planned path over the entire CSL mission. Fig. 6
presents the overall planned path and the actual trajectory of
the AUV in the CSL mission.

B. The Environment with Turbulent Flows

The proposed CPT strategy is also tested in a turbulent
environment. The mean flow velocity [1, 0] m/s is added
with Gaussian white noises [30]. Thus, flow directions and
velocities change unpredictably, which is similar to a real
underwater environment. Fig. 8 shows AUV trajectories and
source likelihood maps generated by the proposed method at
different time steps. At t=42s, the AUV gets the first detection
of plumes, and the source likelihood map narrows possible
source locations down to up flow areas. At t=53s, after the
second detection, the estimated chemical source is located at
the up flow areas, which are close to the actual source location.
From t=53s to t=80s, the AUV proceeds to the target while
avoids obstacles. Eventually, at t=184s, the AUV correctly
finds the chemical source location and declares the source
location if the estimated source location does not change over
30 seconds. Fig. 9 shows the planned path and the actual AUV
trajectory in the experiment reported in Fig. 8.

C. Compare with HMM-Based and Bayesian-Based Source
Mapping Methods

We compare the results of the POMDP based source map-
ping method with the HMM-based [19] and the Bayesian-
based [17] source mapping algorithms. Table I shows the
result of the comparison. All source mapping methods can
correctly converge to the correct chemical source location in
environments with either laminar or turbulent water flows, but
the POMDP-based source mapping method has a faster rate



(a) AUV position at t=38s (b) At t=42s (c) At t=56s (d) At t=135s

(e) Source likelihood map at t=38s (f) At t=42s (g) At t=56s (h) At t=135s

Fig. 7. A CSL mission in an environment with laminar flows that blow from the left to right side with a constant velocity 1 m/s. Diagrams in the first row
show AUV trajectories at different times, which are indicated by blue curves. Arrays of arrows in the background reflects the flow information: the direction
of an arrow points to the flow direction, and the length of an arrow exhibits the flow velocity. The black trail in the horizontal centerline of a diagram is the
plume propagation trajectory. The obstacle is represented by a rectangle with dotted lines. Colors in the background reflect the likelihood of a cell containing
the chemical source: the darker the color, the higher the probability (red: highest, white: lowest). Diagrams in the second row present source likelihood maps
at same time steps with the first row diagrams. The horizontal plane (X and Y ) of a source likelihood map has the same size with the search area, and the
vertical axis shows the probability of a cell containing a chemical source. The AUV’s location is indicated by a red dot on the horizontal plane.

(a) AUV position at t=42s (b) At t=53s (c) At t=80s (d) At t=184s

(e) Source likelihood map at t=42s (f) At t=53s (g) At t=80s (h) At t=184s

Fig. 8. A CSL mission in an environment with turbulent flows. Gaussian white noises were added on flow’s velocities. The black trail represents the plume
trajectory, which changes unpredictably due to turbulent flows. Diagrams in the first row present AUV trajectories and in the second row are source likelihood
maps. Notations of variables and definitions of plots are same with Fig. 7.

of convergence comparing to the HMM-based method. Based
on experiment results, the POMDP-based method converges
to a correct chemical source location with 135 seconds in
the laminar flows environment while the HMM-based method
needs 160 seconds. In the turbulent flows environment, the
POMDP-based method needs 184 seconds and the HMM-
based requires 270 seconds to converge to the correct source
location. Comparing to the Bayesian-based source mapping
algorithm, the POMDP-based method has a comparable per-
formance in terms of the searching time. This is because both
source mapping algorithms employ the same plume detection

TABLE I
THE COMPARISON OF THE POMDP-BASED, HMM-BASED, AND

BAYESIAN-BASED SOURCE MAPPING ALGORITHMS

Searching Time
(Seconds)

Laminar Flows

Searching Time
(Seconds)

Turbulent Flows
POMDP-based 135 184
HMM-based 160 270

Bayesian-based 121 140

and non-detection probabilities, but they are differed in the
process of fusing probabilities.



Fig. 9. A summary of the CSL mission reported in Fig. 8. The AUV follows
the path generated from the A-star algorithm while tracing the plumes. The
AUV correctly finds the source location at the end of the mission.

V. CONCLUSION

Simulation results show that the POMDP-based source
mapping algorithm is valid to estimate the chemical source
location in environments with either laminar or turbulent flows.
Comparing with HMM-based and Bayesian-based source map-
ping algorithms, the POMDP-based method has the advantage
in the converging rate: it only needs few plume detection
events to converge to a correct source location, which is
beneficial for saving the search time in a CSL mission. Also,
by properly defining a heuristic function, the proposed A-star
based online path planning method is feasible to effectively
generate the shortest path toward the target while avoiding
obstacles. Comparing with the traditional artificial potential
field method, the proposed path planner is more effective since
it does not have the minia point issue.
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