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Abstract—This article presents a new olfactory-based naviga-
tion algorithm that guides a mobile robot to find odor sources in
unknown environments. The proposed navigation algorithm takes
onboard sensor measurements as inputs and calculates robot
heading commands that direct the search agent (i.e., a mobile
robot) to trace odor plumes back to the odor source. We modeled
this plume tracing process as a partially observable Markov
decision process (POMDP) since the robot cannot fully observe
the search environment and adapted the twin delayed deep
deterministic policy gradient (TD3) to train the search agent. The
long short-term memory (LSTM) neural networks are utilized to
construct the actor and critic networks in the TD3 algorithm
to fit the partially observable environment. We employed the
curriculum learning to train the search agent in a realistic plume
tracing simulator, where the turbulence of simulated airflows
gradually increased. The agent was implemented in different
airflow environments after the training. Simulation results show
that in both laminar and turbulent flow environments, the
proposed algorithm achieved a higher success rate and shorter
averaged search time compared to the original TD3 (i.e., without
LSTM) and traditional olfactory-based navigation algorithms.

I. INTRODUCTION

Robotic odor source localization (OSL) is a technology that

employs a mobile robot to find an odor source in unknown

environments. This technology can be implemented to solve

many practical tasks, including monitoring air pollution [1],

locating chemical gas leaks [2], locating unexploded mines and

bombs [3], and marine surveys such as finding hydrothermal

vents [4]. The key to correctly finding an odor source is

designing an effective olfactory-based navigation algorithm,

which guides robot to detect odor plumes as cues to approach

the odor source.

In recent years, reinforcement learning (RL) has gained

increasing attention thanks to its recent success in solving

complex problems, such as playing the game of Go [5] and

Atari games [6]. An RL algorithm models the interactions

between an agent and the environment: the agent performs

actions in the environment and receives rewards, where the

agent’s goal is to get the maximal accumulated reward [7].

The RL framework is suitable for modeling the robotic OSL

problem: the agent can be considered as the search robot;

the environment is the search area; rewards can be defined

to encourage the robot to detect odor plumes and find the

odor source. Most RL algorithms model the problem as a fully

Fig. 1. The framework of the proposed work. A mobile robot was employed
as the search agent to find the odor source in an unknown environment.
Onboard sensor readings were fed into a recurrent actor network, trained
by the recurrent TD3 algorithm. The actor network calculated robot heading
commands, i.e., the target moving direction. Then, the robot moved to a
new location in the simulated search environment by following the heading
command and repeated this cycle until it found the odor source location. The
robot moved at a constant speed to simplify the control problem.

observable task (i.e., a Markov decision process, MDP) [6],

[8], [9], [10]. However, this setting is unsuitable for modeling a

robotic OSL problem because the search agent (i.e., a mobile

robot) can only observe its surrounding environment due to

the limited perceptive range of onboard sensors. For instance,

the onboard airflow sensor can only measure wind speeds and

directions at the robot’s position, not the wind information in

the entire search area.

In this work, we modeled the plume tracing process as a

partially observable Markov decision process (POMDP) and

adapted a recurrent deep RL algorithm to solve it. A mod-

ified twin delayed deep deterministic policy gradient (TD3)

algorithm [10] was employed to train the recurrent actor

and critic networks with long short-term memory (LSTM)

layers. As shown in Fig. 1, a realistic simulation program

was utilized as the training environment to train the recurrent

actor and critic networks. The mobile robot was controlled

by the recurrent actor network, where inputs were onboard

sensor measurements, and the output was a heading command

that directs the robot to approach the odor source location.

After the training, we implemented the proposed navigation

algorithm in different airflow environments. We compared
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the proposed algorithm with the traditional olfactory-based

navigation algorithms, the original TD3, and other recurrent

RL methods to evaluate its search performance.

II. RELATED WORKS

Traditional olfactory-based navigation algorithms can be

categorized into three groups, i.e., chemotaxis, bio-inspired,

and engineering-based (so-called probabilistic) algorithms

[11]. The chemotaxis method is the gradient-following algo-

rithm, which directs the robot to follow the plume concen-

tration gradient to find the source. This simple navigation

algorithm performs well in laminar flow environments [12].

However, it is ineffective in turbulent flow environments,

where the odor plumes are twisted by turbulent flows, resulting

in an intermittent and patchy plume trajectory [13].

The core of a bio-inspired navigation algorithm is to direct

a mobile robot to mimic animal olfactory behaviors to find the

odor source, such as the mate-seeking behaviors of male moths

[14] and foraging behaviors of lobsters [15]. Bio-inspired

algorithms usually contain two search behaviors, including

the ‘surge’ and ‘casting’ behaviors [16]. The ‘surge’ behavior

activates when the robot detects odor plumes. Then, the robot

moves upwind to approach the odor source location. In the

‘casting’ behavior, the robot loses plume contact and moves

across the wind direction to re-detect plumes. Recent works

modified the ‘surge/casting’ search phases to improve search

efficiency. For instance, Shigaki et al. [17] devised a fuzzy

inference system to switch different search phases based on

the current search situation [17]. Leathers et al. [18] showed

that adding a ‘backward’ search phase can improve the success

rate in lobster-inspired methods.

By contrast, engineering-based algorithms leverage mathe-

matical and physical principles to model the intricate process

of plume distribution and use these models to make estima-

tions regarding the precise location of the odor source. For

instance, Pang et al. [19] characterized the plume propaga-

tion process as a Gaussian random process and employed

the Bayesian inference theorem to estimate possible odor

source location based on airflow information to form a source

probability map. During the robot maneuver, this map will

be updated with new chemical and wind sensor observations.

In addition to this approach, other methods such as source

term estimation [20], [21], particle filters [22], occupancy

grid techniques [23], and partially observable Markov decision

processes [24] can also be enlisted to compute the source

probability map.Subsequently, a path planner is deployed to

steer the search agent toward the region exhibiting the highest

probability of housing the odor source. Previous path plan-

ning algorithms encompass methodologies like the artificial

potential field approach [25] and the A-star algorithm [26].

Moreover, Vergassola et al. [27] introduced the innovative

infotaxis algorithm, which incorporates information entropy to

guide the search. This technique empowers the search agent

to select movements that minimize the information uncertainty

surrounding the odor source.

In recent years, there has been a notable surge in the

development of RL-based OSL methods [28], [29], [30],

[31], [32]. For instance, Wang et al. [28] introduced a novel

approach in which the plume tracing process is cast as a

model-based RL problem. This approach formulates rewards

based on a combination of plume and source estimations.

Hu et al. [30] presented an alternative model-free RL-based

plume tracing algorithm designed specifically for locating

hydrothermal vents. This method utilizes a variant of the deep

deterministic policy gradient (DDPG) algorithm to train end-

to-end recurrent neural networks (RNNs). Chen et al. [31]

introduced a deep Q-network-based plume tracing algorithm

that operates by taking a heating map of sensor measurements

as input and then calculating robot commands accordingly.

Compared to traditional olfaction-based navigation algo-

rithms, RL-based methods offer several distinct advantages:

1) Elimination of Explicit Search Strategies: RL-based ap-

proaches obviate the need for designing explicit search strate-

gies. They discover odor sources through trial-and-error ex-

periences without requiring the development of a specific

navigation algorithm. 2) Fixed Querying Time: Once training

is complete and the parameters of neural networks are estab-

lished, the computational time required for calculating naviga-

tion commands remains fixed and independent of the size of

the search area. 3) Continuous Performance Improvement: RL-

based methods have the potential for continuous performance

improvement. With more training episodes, these methods can

continually enhance their search performance.

Motivated by the above benefits, we employed a deep

RL algorithm to design a new olfactory-based navigation

algorithm. Our work is different from the existing deep RL-

based plume tracing algorithms in the following ways: 1) to

the best of our knowledge, it is the first time to implement the

TD3 and recurrent TD3 in the OSL problem; 2) compared to

[31], we propose an end-to-end RL model without the needs to

pre-process the sensor data or to calculate a source likelihood

map; 3) compared to [29], the simulated wind direction/speed

and corresponding odor plume movements are changing in

time. This time-varying setting is more realistic and practical;

4) our work can be considered as a further improvement

of [30], where the recurrent deterministic policy gradient

(RDPG) [33] algorithm was implemented in an OSL problem.

We implemented the recurrent TD3 algorithm to reduce the

overestimation problem to improve the learning result; 5) we

used a curriculum learning pattern in the training process,

where the agent first learned how to trace odors in a laminar

flow environment. We gradually increased the turbulence of

airflows in the training environment to improve the agent’s

search performance.

III. PRELIMINARIES

A. RL in MDP and POMDP

The standard RL setting contains an agent and an environ-

ment. The interaction between the agent and the environment

is modeled as an MDP∼ {S,A, P,R}, where S is a set of

states, A is a set of actions, P is a transition probability, and
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(a) (b)

Fig. 2. One step transition in (a) MDP and (b) POMDP.

R is a reward function. Figure 2(a) presents an MDP model

within a time step. The agent is in a state (st, st ∈ S) at

time t, and after it takes an action (at, at ∈ A) to arrive in the

next state (st+1, st+1 ∈ S) with the state transition probability

P (st+1|st, at), the agent will obtain a reward (rt, rt ∈ R) [7].

By contrast, POMDP does not assume that the state is

fully observable and is defined as a six-tuple POMDP∼
{S,A,Ω, P,O,R}, where S, A, P , and R are the same

as in the MDP, with an additional observation space Ω and

observation probability O. As shown in Fig. 2(b), At time t,
the agent receives an observation (ot, ot ∈ Ω) at the current

state (st, st ∈ S), and after acting (at, at ∈ A), the agent is

transferred to a new state (st+1, st+1 ∈ S) according to the

state transition probability P (st+1|st, at) and receives a new

observation (ot+1, ot+1 ∈ Ω) with the observation probability

O(ot+1|st+1, at) and a reward rt ∈ R.

The objective of an RL agent in either MDP or POMDP is

to select actions that maximize its expected future discounted

reward, i.e., E[
∑∞

t=0 γ
trt], where rt is the reward the agent

received at time t and γ ∈ [0, 1] is the discount factor

that penalizes the future rewards. A policy in RL algorithms

guides the agent to select actions, including the stochastic

policy π(at|st) and the deterministic policy μ(st). The value
function is a prediction of future return. For MDPs, the state-

value function V π(st) represents the expected future return

starting from a state st and following π afterward; action-

value function Qπ(st, at) represents the expected future return

of taking action at at a state st and following π after that. For

POMDPs, state s is not directly observable. Thus, observation

o is used to represent the state- and action-value functions.

Denote an observation history

ht = {o1, a1, o2, a2, ..., ot−1, at−1}, (1)

then, the state-value function can be presented as V π(ot, ht)
and the action-value function is Qπ(ot, ht, at) [34]. In deep

RL, value functions are calculated using neural networks,

where network parameters are learned from interactions be-

tween the agent and the environment [35].

B. Search Agent

This work assumes that the search agent is a mobile robot.

Specifically, it is assumed that this robot is equipped with

a comprehensive sensor suite, including a chemical sensor,

an anemometer, and a positioning sensor. These sensors can

provide the measurement of various parameters, namely, odor

concentrations denoted as ρ, wind speeds represented as u with

corresponding directions φ measured in the inertial frame. Fur-

thermore, the robot’s position (x, y) within the inertial frame

and its yaw angles ψ are also included in sensor measurements.

To control a mobile robot on a two-dimensional plane, only

speed and heading commands are required. An additional

simplification is made by assuming that the robot maintains

a constant speed, specifically v = 1 m/s. The olfaction-based

navigation method computes the heading commands, denoted

as ψc, based on onboard sensor readings.
Observations of the robot are sensor measurements. In tra-

ditional olfactory-based navigation algorithms [14], [19], wind

speeds/directions, robot yaw, and plume concentrations are

essential information for calculating robot heading commands.

Thus, we define the observation o as,

o = {vx, vy, ux, uy, δ}, (2)

where vx = v cos(ψ) and vy = v sin(ψ) are robot speeds at

x and y directions, respectively; ux = u cos(φ) and uy =
u sin(φ) are wind speeds at x and y directions, respectively;

δ is the plume non-detection period that measures the period

between two consecutive plume detection events. The action

a is the heading command, i.e.,

a = ψc. (3)

The range of heading commands is from −π/2 to π/2, which

specifies the rotation direction (negative: anti-clockwise; pos-

itive: clockwise) and rotation angle. We can also choose other

heading command ranges, e.g., −π to π, for different robotic

platforms. Notice that we converted angle-related parameters

into velocities, such as wind direction φ and vehicle heading

ψ, to avoid the problem that different angles could refer to

the same directions, e.g., −π and π. In addition, we consider

that the robot detects odor plumes if ρ exceeds a threshold;

otherwise, the robot does not detect odor plumes.

IV. METHODOLOGY

A. Recurrent Actor and Critic Networks
Fig. 3 presents the architectures of the actor and critic

networks used in this work. Both actor and critic networks

contain two branches, where branch 1 is used to process

the current observation ot (or the current observation and

action combination, i.e., ot and at, for the critic network),

and branch 2 contains the LSTM layer, which is used to

extract the information from the past observation history, i.e.,

ht. Specifically, the observation history is first processed by a

linear layer and then fed into the LSTM layer. Outputs from

two branches are concatenated and pass through two linear

layers to calculate the output. For the actor network, the output

is the action, i.e., at, and for the critic network, the output is

the action-value function Q(ot, ht, at).

B. The Recurrent TD3 Training Algorithm
We developed the training algorithm based on two existing

algorithms, i.e., RDPG [33] and TD3 [10] algorithms. Algo-

rithm 1 presents the training algorithm for the recurrent TD3,

which includes the following main components:
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(a) Actor (b) Critic

Fig. 3. Architectures of actor and critic networks used in this work. Each
network has two branches. Branch 1 is used to process the current state (and
the state-action combination for the critic network). Branch 2 contains the
LSTM layer, which is used to process the observation history ht. Outputs
from two branches are concatenated and pass through two linear layers to get
the output. The notation in a layer includes the layer type, output size, and
the activation function.

1) Initialization: Before the training, we initialize two critic

networks, i.e., Qθ1 and Qθ2 , and the actor network, i.e., μβ ,

with random parameters θ1, θ2, and β. Then, we initialize

target critic and actor networks by copying the previous

networks, i.e., θ′1 ← θ1, θ′2 ← θ2, and β′ ← β. Finally, we

initialize a replay buffer R to store training episodes.

2) Interacting: In this part, the actor interacts with the

environment and collects the training data. For an episode, we

define the maximal search time T (T = 200 s in this work). At

every second within an episode, the agent selects an action at
via the actor network μβ , added with a normal random noise

ε ∼ N (0, σ) (σ = 10 in the implementation). After the agent

executes the action, it receives a new observation ot+1 and

reward rt. Rewards in this work are defined to encourage the

robot to detect odor plumes and find the odor source location:

r =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 Concentration above threshold,

0 Concentration below threshold,

100 Find the source,

−100 Run out of time or move outside.

(4)

The observation and action will be appended to the history

via ht+1 ← ht, ot, at, and new observation and history will

be used as the input for the actor network, i.e., ot ← ot+1

and ht ← ht+1. When an episode is completed, i.e., either the

robot finds the odor source (the distance between the robot

and the odor source is less than a threshold, i.e., 3 m), runs

out of the search time, or moves to the outside of the search

area, we store the sequence τ = (o1, a1, r1, ..., oT , aT , rT ) in

the replay buffer R. If an episode ends before the time limit

T , we pad the sequence τ with 0 to make all episodes have

the same length T .

3) Learning: In the learning step, a minibatch of N
episodes will be randomly sampled from the replay buffer R.

For each sample episode, we calculate a target critic value via

yit = rit + γ min
{j=1,2}

Qθ′
j

(
oit+1, h

i
t+1, ã

)
, (5)

Algorithm 1 Recurrent TD3 Training Algorithm

1: Initialize two critic networks Qθ1 , Qθ2 and the actor

network μβ with parameters θ1, θ2, and β.

2: Initialize target critic networks Qθ′
1
, Qθ′

2
and the target

actor network μ′
β with parameters θ′1 ← θ1, θ′2 ← θ2, and

β′ ← β.

3: Initialize replay buffer R.

4: for episode=1 to M do
5: /* Interacting */
6: Initialize the observation o1=env.reset() and observa-

tion history h1 ← 0.
7: for t=1 to T do:

8: Select an action at = μβ(ot, ht) + ε, ε ∼ N (0, σ).
9: Execute at and receive new observation ot+1 and

reward rt.
10: Append the observation and action to history:

ht+1 ← ht, ot, at.
11: Update observation ot ← ot+1 and history ht ←

ht+1.
12: end for
13: Store the sequence (o1, a1, r1, ..., oT , aT , rT ) in R.

14: /* Learning */
15: Sample {oi1, ai1, ri1, ..., oiT , aiT , riT }i=1,...,N from R.

16: Compute the target critic value for each sample

episode i using

yit = rit + γmin{j=1,2} Qθ′
j

(
oit+1, h

i
t+1, ã

)
,

ã = μβ′
(
oit+1, h

i
t+1

)
+ ε, ε ∼ clip(N (0, σ),−c, c).

17: Update the critic networks by gradient descent:

θj ← ∇θj
1

NT

∑N
i=1

∑T
t=1

(
Qθj

(
oit, h

i
t, a

i
t

)− yit
)2

,

j ∈ (1, 2).

18: Update the actor network by gradient ascent:

β ← ∇β
1

NT

∑N
i=1

∑T
t=1 Qθ1

(
oit, h

i
t, μβ

(
oit, h

i
t

))
.

19: Update target networks:

θ′j ← ρθj + (1− ρ)θ′j , j ∈ (1, 2)

β′ ← ρβ + (1− ρ)β′

20: end for

where ã = μβ′
(
oit+1, h

i
t+1

)
+ ε, ε ∼ clip(N (0, σ),−c, c) and

γ is 0.9 in the implementation. In Eqn. 5, the smaller value

from two target critic networks is used to form the target critic

value, and the target actor network calculates an action ã with

a normal random noise that is clipped within −c and c (c = 10
in the implementation).

With the target critic value yt, parameters of two critic

networks θj , j ∈ (1, 2) are updated to minimize the difference

(measured by the mean squared error, i.e., MSE) between the

calculated critic values from critic networks and the target

critic value via the gradient descent:

θj ← ∇θj

1

NT

N∑
i=1

T∑
t=1

(
Qθj

(
oit, h

i
t, a

i
t

)− yit
)2

. (6)

The actor network is updated to maximize the critic value.

The goal is to improve the actor network so it can choose
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Fig. 4. A snapshot of the simulated search area. The size of the search area
is 100 × 100 m2, where the odor source is located at (20, 0) m. The odor
source locate can be changed to an arbitrary position inside the search area.
The grey dots represent the emitted odor plumes. Arrows in the background
indicate the airflow directions and speeds.

good actions that maximize the future reward. Both Qθ1 and

Qθ2 can be used to calculate the critic value, as in the original

TD3 algorithm. In this work, Qθ1 is used to calculate the critic

value. Thus, parameters of the actor network β are updated

with the gradient ascent:

β ← ∇β
1

NT

N∑
i=1

T∑
t=1

Qθ1

(
oit, h

i
t, μβ

(
oit, h

i
t

))
. (7)

Finally, the target critic and actor networks are updated via

θ′j ← ρθj + (1− ρ)θ′j , j ∈ (1, 2)

β′ ← ρβ + (1− ρ)β′ (8)

where ρ = 0.99, as suggested by the TD3.

V. SIMULATION RESULTS AND ANALYSIS

A. Simulated Robotic OSL Environment

To evaluate the search performance of the proposed

olfactory-based navigation algorithm, we utilized a simulated

robotic OSL environment, which was built based on [36].

This simulation program was designed to provide a graphical

animation that illustrates the development of odor plumes and

the search process of the robotic agent within the search

environment. The simulation consists of various dynamic

components, including a time-varying flow field, a coherent

trajectory for the odor plume, and the complete six-degree-of-

freedom dynamics of a robotic agent. Notably, this simulation

program has found utility in previous research endeavors,

including studies referenced in [37] and [38].

In Fig. 4, the search area within the simulation is presented.

It spans a size of 100×100 square meters. A coordinate system

(x−y) is employed to denote positions within this area. Within

this coordinate system, the odor source is located at (20, 0)
m and continuously emits 10 filament packages, referred to

as plumes, per second. These plumes are represented by the

grey dots clustered in the central region, forming a distinctive

and curved trajectory. Notice that, the odor source location

and plume emission rate can be adjusted in the simulation

program. In the background, local wind vectors are represented

by arrows. These arrows indicate both the direction of flow and

the magnitude of flow velocity. The flow vectors are calculated

(a) U0=(1,0) m/s, ς = 2 (b) U0=(1,0) m/s, ς = 3

(c) U0=(1,0) m/s, ς = 4 (d) U0=(1,0) m/s, ς = 5

Fig. 5. Plots of averaged reward in the curriculum learning pattern, where
the blue line is the proposed recurrent TD3 method and the orange line is the
original TD3 method. The search environment was more and more turbulent
in the training.

based on dynamic boundary conditions that evolve over time.

These conditions result from a combination of a mean flow

vector denoted as U0 and Gaussian white noise with a zero

mean and variance ς . By altering the values of U0 and ς ,

different turbulence patterns within the airflow fields can be

generated.

B. Training Results

We first trained the agent in a laminar flow environment,

where U0=(1,0) m/s and ς=2. Then, we gradually increased

the ς value to 3, 4, and 5 to make the airflow field in the search

environment more turbulent. In each airflow environment,

the number of training episodes was 10K, and the robot

randomly selected actions to explore the environment in the

first 1K episodes. Parameters of actor and critic networks were

randomly initialized in the first environment. In the remain-

ing environments, network parameters were loaded from the

previous training result. The total training episodes was 40K.

In an episode, the robot’s initial position was randomly

selected within the search area. The robot was initially guided

by the ‘zigzag’ search strategy [39] to detect odor plumes for

the first time. Once the robot obtained the first plume detection,

the proposed recurrent TD3 was activated to control the robot

with the calculated heading commands. The ‘zigzag’ search

strategy directed the robot to search plumes by moving across

the wind directions and bouncing inward if it arrived at search

area boundaries.

Fig 5 presents the averaged rewards of the proposed re-

current TD3 method (i.e., Algorithm 1) and the original TD3

algorithm [10] obtained during the training. We can observe

that rewards of the proposed recurrent TD3 and the original

TD3 methods gradually grow with the increase of training
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(a) 32 s (b) 61 s

(c) 96 s (d) 123 s

(e) 151 s (f) w/o Curriculum Learning

Fig. 6. (a) - (e) Snapshots of a sample trial in a turbulent and unseen
environment at different time steps. The robot search trajectory is painted in
blue. We highlighted the durations of robot search behaviors along the robot
trajectory. Except the ‘zigzag’ search behavior, the agent learned ‘backward
search’, ‘crosswind casting’, and ‘upwind surge’ behaviors from the training.
These learned search behaviors were very similar to animal olfactory search
strategies, such as moth-inspired [14] and lobster-inspired [18] methods.
(f) Search trajectory generated by the agent trained without the curriculum
learning pattern.

episodes. In Fig. 5(a), the averaged reward of the proposed

recurrent TD3 method converges around 100, indicating a high

success rate of correctly finding the source position. Compared

to the original TD3 method, which converges around 50, the

proposed recurrent TD3 method is more effective. In Fig. 5(b)-

(d), our proposed method achieves a higher reward value at the

end of the training, reflecting that the recurrent TD3 method

is more effective in finding the odor source than the original

TD3 algorithm. We will further prove this statement in the

repeated tests at Section V-D.

C. Sample Trials in A Turbulent Flow Environment

We first present a sample trial, where the proposed recurrent

TD3 method was implemented in a turbulent and unseen flow

environment, where the time-varying wind was calculated via

U0 = (1, 0) m/s and ς = 6. We also changed the odor source

location, which was located at (10,0) m in this group of tests.

Fig. 6 presents snapshots of the sample trial at different

times during the search. As shown in Fig. 6(a), the robot

started the search at (60,-40) m and employed the ‘zigzag’

trajectory to find plumes. At t=32 s, the robot detected the odor

TABLE I
STATISTIC RESULTS OF REPEATED TRIALS IN LAMINAR ENVIRONMENTS;

U0=(1,0) M/S AND ς=2.

Moth-
inspired
Method

[14]

Bayesian-
Inference
Method

[19]

TD3
[10]

RDPG
[30]

The
Proposed

Recurrent-
TD3

Success
Rate

100/100 100/100 77/100 90/100 100/100

Avg.
Search

Time (s)
133.16 147.25 117.62 131.32 101.05

Std.
Search
Time

50.54 30.80 49.02 89.96 36.04

plume for the first time, which activates the proposed recurrent

TD3 method. After this plume detection, the robot moved

upwind but did not detect plumes (i.e., Fig. 6(b)). At t=61 s, the

robot performed a backward crosswind search and successfully

detected plumes at t=96 s as indicated by Fig. 6(c). After that,

the robot continued moving upwind and re-detected plumes at

t=110 s (i.e., Fig. 6(d)). The robot correctly found the odor

source location at t=151 s as shown in Fig.6(e). Fig. 6(f)

presents the search trajectories created by the search agent

trained without the curriculum learning pattern. As presented

in Fig. 6(e), the robot with the curriculum learning generated

a wavy search trajectory during the upwind surge, which

is similar to the ‘track-in’ and ‘track-out’ behaviors in the

traditional moth-inspired method [14]. These curly movements

help the robot to maintain inside plumes during the upwind

surge, helping improve the success rate of finding the odor

source. By contrast, the agent without the curriculum learning

has a smooth upwind surge trajectory, and it failed to find the

odor source in this environment.

Fig. 7 presents robot search trajectories with different odor

source and robot initial positions. It is shown that the proposed

recurrent TD3 method can effectively trace odor plumes and

correctly find the source location no matter how the odor

source and robot initial positions change.

D. Repeated Tests and Statistic Analysis

To further evaluate the effectiveness of the proposed re-

current TD3 method, we implemented it in repeated tests

and compared it with other olfactory-based navigation meth-

ods, including the traditional moth-inspired method [14], the

Bayesian-inference method [19], the original TD3 algorithm

[10], and the RDPG algorithm [30]. We first implemented

the above navigation methods in a laminar flow environment,

where U0 = (1, 0) m/s and ς = 2, and then in a turbulent

flow environment, where U0 = (1, 0) m/s and ς = 5. Each

navigation method was repeatedly performed 100 times in both

laminar and turbulent flow environments, and the robot started

at a far end of the search area, i.e., (80, -40) m. The time limit

for a trial in this group of tests is 400 s.

Table I presents the statistic results of in laminar environ-

ments. Compared to the original TD3 method and RDPG,
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(a) (b) (c) (d)

Fig. 7. Trials with different odor source locations and robot initial positions. The odor source is located at (a) (10,-10) m, (b) (10,-20) m, (c) (30,-10) m,
and (d) (20,10) m. The robot initial positions are labeled in the diagram.

TABLE II
STATISTIC RESULTS OF REPEATED TRIALS IN TURBULENT

ENVIRONMENTS; U0=(1,0) M/S AND ς=5.

Moth-
inspired
Method

[14]

Bayesian-
Inference
Method

[19]

TD3
[10]

RDPG
[30]

The
Proposed

Recurrent-
TD3

Success
Rate

59/100 88/100 60/100 68/100 92/100

Avg.
Search

Time (s)
287.37 190.02 167.25 202.02 141.74

Std.
Search
Time

112.22 91.87 88.26 134.72 85.10

our proposed method achieved a higher success rate and a

smaller standard deviation, indicating the effectiveness of the

proposed method. Compared to moth-inspired and Bayesian-

inference methods, the proposed method achieved a shorter

averaged search time. Table II shows the statistic results in

turbulent flow environments. The proposed method achieved

the highest success rate in 100 repeated tests, i.e., 92%, which

is 24% higher than the RDPG method, 32% higher than the

original TD3 method.

From this group of tests, we observe that: 1) compared to

MDP, the POMDP is more effective in modeling the robotic

OSL problem; 2) compared to RDPG, the recurrent TD3

can learn a better search strategy to find odor sources in

unknown environments; 3) in the simulated laminar/turbulent

flow environments, the proposed method outperforms other

methods in terms of the success rate and the averaged search

time. It is worth mentioning that compared to the base model

(i.e., Fig. 5(a)), which achieved 89% success rate and 158.29

s averaged search time in this group of tests, our curriculum

training method improves the success rate by 3% and reduces

the averaged search time by 16.55 s.

E. Discussion and Future Works

From search trajectories generated by the proposed recurrent

TD3 method (i.e., Fig. 6), we found that the search behaviors

learned from the training were very similar to the ones used

in traditional olfactory-based navigation methods, such as the

‘upwind surge’ and ‘crosswind excursion’ in the moth-inspired

method [14] and the ‘backward search’ in the lobster-inspired

method [18]. In addition, the robot knew when and how

to use the learned search behaviors to find the odor source

location effectively and adapted the learned skills in unseen

environments. When we changed odor source locations, the

robot could still successfully find the source location, showing

that the recurrent actor network did not memorize the final

source location but learned a valid plume tracing strategy.

Moreover, in repeated tests, we found that the proposed

recurrent TD3 achieved a better search performance compared

to the original TD3 and the RDPG methods, demonstrating the

effectiveness of the proposed navigation method.

The future research directions include the following topics:

1) implementing the proposed recurrent TD3 method in a real-

world environment. Although simulation results suggest the

effectiveness of the proposed method, implementing it in real-

world environment is still a challenging task due to the gap

between the simulation and the environment. Some existing

techniques, e.g., transfer learning [40], [41], can be applied

to mitigate the sim-to-real gap; 2) multiple search agents.

Using multiple search agents instead of a single one could

further improve the search performance since more agents

can collect more samples from the environment, improving

the sample efficiency; 3) other types of recurrent networks.

Besides LSTM, other recurrent layers can be tested, e.g., gated

recurrent unit (GRU).

VI. CONCLUSION

This work presents a new olfactory-based navigation algo-

rithm via an end-to-end recurrent deep RL method. We first

model the plume tracing process as an POMDP and devised

a recurrent TD3 method to train the search agent. During the

training process, we define rewards to encourage the search

agent to detect odor plumes and find the odor source. After

the training, we implement the proposed method in unseen tur-

bulent flow environments and change the odor source location.

Compared to traditional olfactory-based navigation methods,

simulation results show that the proposed method achieved a

shorter averaged search time in repeated tests. As for deep

learning-based method, the proposed method outperforms the

original TD3 and RDPG algorithm in terms of the success

rate, while the success rate is improved by 32% and 24%,

respectively.
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