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Abstract: This article presents two new chemical plume tracing (CPT) algorithms for using on au-
tonomous underwater vehicles (AUVs) to locate hydrothermal vents. We aim to design effective CPT
navigation algorithms that direct AUVs to trace emitted hydrothermal plumes to the hydrothermal
vent. Traditional CPT algorithms can be grouped into two categories, including bio-inspired and
engineering-based methods, but they are limited by either search inefficiency in turbulent flow envi-
ronments or high computational costs. To approach this problem, we design a new CPT algorithm
by fusing traditional CPT methods. Specifically, two deep reinforcement learning (RL) algorithms,
including double deep Q-network (DDQN) and deep deterministic policy gradient (DDPG), are
employed to train a customized deep neural network that dynamically combines two traditional
CPT algorithms during the search process. Simulation experiments show that both DDQN- and
DDPG-based CPT algorithms achieve a high success rate (>90%) in either laminar or turbulent flow
environments. Moreover, compared to traditional moth-inspired method, the averaged search time is
improved by 67% for the DDQN- and 44% for the DDPG-based CPT algorithms in turbulent flow
environments.

Keywords: chemical plume tracing; deep reinforcement learning; autonomous underwater vehicles

1. Introduction

Autonomous underwater vehicles (AUVs) play a significant role in marine science
surveys. One important application is using AUVs to find underwater hydrothermal vents.
Hydrothermal vents, i.e., ocean volcanoes, are natural plumbing systems that transport
heat and minerals from the interior of the Earth to the ocean [1]. Studying hydrothermal
vents can help scientists investigate the origin and evolution of life on Earth [2]. Tracing
the emitted hydrothermal plumes to find hydrothermal vents is the most effective method
since the emitted chemical materials are distinct from the surrounding seawater and can
disperse over a long distance driven by ocean currents [3]. Therefore, it is possible to
deploy an AUV equipped with chemical sensors to detect emitted chemical plumes and
trace them back to the source. Several successful AUV-based hydrothermal vent surveys
were conducted in the Pacific [4] and Atlantic Oceans [5], which verified the feasibility of
using AUVs in finding hydrothermal vents in real-world environments. However, existing
AUV-based hydrothermal vent localization methods relied on a simple and fixed search
trajectory, e.g., the lawn mower trajectory. Designing an effective, efficient, and intelligent
hydrothermal vent search strategy requires further investigation.

The key to successfully finding hydrothermal vents is the design of an effective
chemical plume tracing (CPT) algorithm [6]. CPT algorithms guide the search agent, i.e.,
an AUV, to detect chemical plumes as cues to find the source. A similar application is
image-based navigation [7], which directs the search agent using the information extracted
from captured images. In CPT algorithms, estimating emitted chemical plumes is the most
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challenging task since the plume distribution varies in different flow environments [8]. For
instance, chemical plumes form a spatially coherent trajectory in laminar flow environments
thanks to the stable flow advection, whereas in turbulent flow environments, the plume
trajectory is an intermittent and patchy path since the turbulent flows stretch and twist
chemical plumes in the environment.

Various CPT algorithms were developed for tracing chemical plumes and finding
chemical sources. These CPT algorithms can be categorized into two groups, including bio-
inspired and engineering-based methods. As suggested as its name, bio-inspired methods
command a search agent to find the chemical source by mimicking animal olfactory behav-
iors. A typical example is the mate-seeking behaviors of male moths, which could locate
a female moth by detecting emitted pheromone over a long distance. On the other hand,
engineering-based methods (also called probabilistic methods) calculate the probability
of a region containing the chemical source. These methods rely on mathematical plume
propagation models to estimate the chemical source locations.

In recent years, thanks to the development of computational technologies, we have wit-
nessed a surge in deep learning/machine learning technologies and applications. Among
different deep learning algorithms, reinforcement learning (RL) [9] is suitable for imple-
menting on robotic applications. The core of RL algorithms is to model the interaction
between the agent and the environment. The agent can choose actions (either continuous
or discrete actions) in the environment. In return, the agent will receive rewards and
be transmitted to a new state in the environment. The goal of the agent is to obtain a
maximal cumulative reward. Available RL algorithms can be categorized into two groups:
model-based and model-free RL algorithms [10]. The difference between these two groups
is whether the agent has access to a model of the environment. Having a model, e.g.,
model-based RL, allows the agent to plan and calculate future rewards. This ability enables
the agent to predict what would happen when choosing an action. On the other hand,
model-free RL (or deep RL) does not have access to the environment model. Instead, these
RL algorithms focus on estimating the value functions directly from interactions with the
environment. In practice, model-free RL has a broader application spectrum since the
environment model is usually unavailable in many applications. Model-free RL algorithms
have been implemented in many applications that require intelligent decision-making, such
as playing Atari games [11] and playing the game of Go [12].

Considering the difficulty of modeling an unknown underwater environment, we
leverage model-free RL algorithms (i.e., deep RL) to solve the problem of locating hy-
drothermal vents. The goal is to design an intelligent agent that can effectively fuse two
traditional CPT algorithms from two categories, i.e., bio-inspired and engineering-based
algorithms, to improve search efficiency. The core idea of our proposed method is to get a
good search agent with a short training time and limited computational resources. Thus,
instead of training a search agent from scratch, we pre-process sensor data using traditional
CPT algorithms and let the RL models to choose a good search strategy during the search
process. Compared to end-to-end training, this operation helps us reduce the training
time and the querying time of neural networks [13,14]. The motivations for combining
two traditional CPT methods are twofold. First, RL algorithms are notoriously in sample
inefficiency [15]. Training a functional end-to-end deep neural network (DNN), i.e., a DNN
that takes sensor measurements as inputs and calculates robot commands directly, using
RL algorithms is time-consuming and requires intensive computational resources. Taking
Alpha Go Zero [16] as an example, it takes 40 days on 4 Tensor Processing Units (TPUs) to
train a superhuman level DNN to play the game of GO. Therefore, to accelerate the training
process, we train a DNN to dynamically choose (or combine) provided CPT algorithms
instead of training an end-to-end DNN that learns an effective navigation algorithm from
scratch. Secondly, bio-inspired and engineering-based methods have distinct search per-
formances in different flow environments. In laminar flow environments, a bio-inspired
method is more efficient since it can command the robot to maintain inside plume trajec-
tories, enabling the robot to quickly approach the odor source location. In turbulent flow
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environments, an engineering-based method is more effective since it can estimate possi-
ble odor source locations based on previous detection history. In contrast, a bio-inspired
method must command the robot to perform a time-consuming cross-wind behavior to
re-detect plumes, which has a very low success rate in turbulent flow environments.

Specifically, the moth-inspired method [17] (i.e., a typical bio-inspired CPT method)
and the Bayesian-inference method [18] (i.e., an engineering-based CPT method) are se-
lected in this work. Both methods were proven valid in real-world CPT experiments on an
AUV. As for deep RL algorithms, we choose the double deep Q-network (DDQN) [19] and
deep deterministic policy gradient (DDPG) [20] algorithms to train a deep neural network
(DNN), respectively. Inputs of the DNN are AUV’s sensor measurements, and the output
is a fusion coefficient that combines heading commands calculated from two traditional
CPT methods. Depending on the implemented deep RL algorithm, the fusion coefficient
could be a binary switch (for DDQN) or a variable between 0 to 1 (for DDPG). The training
was conducted in a simulated plume tracing environment. After the training, we evaluated
the search performance of two deep RL algorithms in repeated tests and compared them
with traditional CPT methods.

The main contribution of this work can be listed as follows:

• Fuse two traditional CPT algorithms using deep RL methods to improve the search
efficiency;

• Present two different fusion algorithms, including discrete and continuous fusion
coefficients;

• Verify the effectiveness of the proposed methods in a realistic simulation program in
repeated tests and compare the search results with traditional CPT algorithms without
the fusion.

In summary, the remaining paper is organized as below. Section 2 reviews the recent
related works. Section 3 demonstrates the flow diagram of the proposed algorithms, two
traditional CPT algorithms, and the basic knowledge in RL algorithms. Section 4 presents
the proposed deep RL-based CPT algorithm. Section 5 presents the simulation program
and statistic results in repeated tests.

2. Related Works

In the early phase of the CPT studying, the intuitive chemotaxis CPT algorithm [21],
i.e., the gradient following algorithm, was developed and implemented on robots to find
chemical sources in a laminar flow environment. In chemotaxis CPT algorithms, the search
agent was equipped with a pair of chemical sensors on two sides of the agent. The agent was
commanded to move to the side with higher detected chemical concentration. This simple
navigation algorithm performs well in laminar flow environments, as verified by these
applications [22–25]. However, the plume trajectory becomes intermittent in turbulent flow
environments, resulting in a discontinuous plume concentration distribution. Therefore,
the search agent was always led in the wrong direction or trapped in a local maximal point
with the chemotaxis CPT algorithms in turbulent flow environments.

A variant algorithm of chemotaxis is the lobster-inspired algorithm, which tries to
solve the problem of tracing chemical plumes in turbulent flow environments. The lobster’s
foraging behaviors inspired this kind of CPT algorithm: a lobster turns toward the side
of higher odor concentration or goes straight forward if two antennules detect nearly
the same concentration, and if neither of the antennules detects odor concentrations,
the lobster moves backward. Compared to the original chemotaxis CPT algorithms, the
lobster-inspired algorithms utilize both temporal and spatial information, helping improve
the success rate in finding chemical sources in turbulent flow environments. According
to [26], adding the second strategy, i.e., the search agent moves backward when neither
chemical sensor detects chemical plume concentrations, improves the success rate by 33%.
In addition, recent simulation studies [27,28] showed that the lobster-inspired algorithm
achieves a higher success rate than the chemotaxis algorithm alone.
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Another bio-inspired CPT algorithm is the moth-inspired algorithm. As suggested
by its name, the moth-inspired method was derived based on the mate-seeking behaviors
of moths. In nature, a male moth can locate a female moth over a long distance (several
kilometers) by tracing the emitted pheromone plumes [29]. This search strategy can be
summarized as two behaviors: (1) the upwind search when pheromone plumes were
detected and (2) a local search after losing the plume contact [30]. Specifically, the male
moth will fly upwind when it detects the emitted pheromone plumes and fly crosswind
when it loses pheromone contact. The upwind search is also called the ‘surge’ behavior, and
the crosswind search is called the ‘casting’ behavior. A male moth can find a female moth
by iterating these two behaviors. There are many applications of moth-inspired methods
on AUVs. For instance, Li et al. [31] and Pang et al. [32] applied the moth-inspired method
on an AUV to find an underwater chemical source. In their methods, the traditional surge
behavior was split into track-in and track-out behaviors, which helped the AUV maintain
inside chemical plumes. Shigaki et al. [33] improved the traditional moth-inspired method
by dynamically changing the duration of surge behavior. Their method calculated the
surge time based on the moth’s muscle activities under the stimulation of chemical plumes.
They also devised a fuzzy inference system to adaptively transit different search behaviors
based on current search readings [34].

By contrast to bio-inspired methods, we can also use mathematical models of chemical
plumes to estimate the possibility of plume distribution in the search area and use this
probability distribution to direct the source search. Using mathematical models to direct
the chemical source search is referred to as engineering-based algorithms (or probabilistic
methods). The key in this kind of CPT algorithm is calculating a source probability map,
which presents the probability of each region containing the chemical source in the search
area. For instance, the Bayesian-inference method [18] was devised to estimate possible
chemical source locations. The core of this method was to model plume movements as a
Gaussian random process and inversely calculate the probability of a region containing
the chemical source via a series of plume detection and non-detection events. Besides,
hidden Markov model [35], particle filter [36], occupancy grid [37], and partially observable
Markov decision process [38] can also be employed to design the source probability map.
Once the source probability map was obtained, the search agent can move to the region
with the highest probability of containing the chemical source by directing with the path
planners. Possible path planning algorithms include artificial potential field [39] and A-
star [40] path planning algorithms. Vergassola et al. [41] proposed a infotaxis algorithm,
which employed the information entropy to direct the robot search for the chemical source.
The agent will select the future movement that greatly reduces the information uncertainty
of chemical source.

Multi-agent search is also popular in the recent CPT development. A heavily quoted
method was particle swarm optimization (PSO) [42]. The core idea is to optimize the
problem via iteratively improving candidate solutions with a fitness function. To apply
PSO to CPT problems, [43,44] modeled the measured chemical concentration as the fitness
function, and [45,46] modeled the source probability map, generated from engineering-
based methods, as the fitness function. The best candidate can be treated as the chemical
source estimate, and this best candidate will be evaluated based on the fitness function.
The search agents’ positions will be updated to approach the best candidate.

Thanks to the recent development of high performance computing technologies, we
have witnessed a shift of using deep learning and machine learning methods to design
effective CPT algorithms. In [47], the plume tracing process is modeled as a model-based
RL problem, where rewards are defined based on a combination of plume and odor source
estimations. To dynamically combine plume and odor source estimations, a fuzzy inference
system is designed to estimate the current search situation and balance the exploration
and exploitation. In [48], two types of deep neural networks, including a feedforward and
convolutional neural networks, are trained via the supervised learning method. Training
data was obtained by implementing traditional CPT methods in a simulation program.
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Hu et al. [13] presents a deep RL-based CPT algorithm for using on an AUV for locating
hydrothermal vents. In this work, a variant of deep deterministic policy gradient algorithm
is adopted to train an end-to-end recurrent neural network (RNN), which takes AUV
observations as inputs and calculates AUV heading commands. Chen et al. [49] presents a
deep Q-network based CPT algorithm that takes a sensor measurement heating map as
an input and calculates robot commands. To the best of authors’ knowledge, there is no
available applications that use deep RL to combine multiple CPT algorithms to achieve a
higher search efficiency.

3. Preliminaries
3.1. An Overview of the Proposed CPT Algorithms

In this work, we present two new CPT algorithms for using on AUVs to trace emitted
chemical plumes and find hydrothermal vent locations. First of all, we model the plume
tracing of hydrothermal vent as a 2-dimensional (2-D) search problem. This is because
the emitted hydrothermal plumes is mainly diffused on a fixed depth in an underwater
environment. As shown in Figure 1, the structure of the emitted hydrothermal plumes
comprises two components, namely buoyant and non-buoyant plumes. The non-buoyant
plumes could range from tens of hundreds of kilometers at a fixed altitude above the
seafloor [17]. Therefore, we simplify the hydrothermal vent localization problem on a
2-D plane search problem, where the AUV aims to find the hydrothermal vent on a hori-
zontal plane of non-buoyant plumes. This simplification can also be found in other CPT
applications, such as [13,50,51].

Figure 1. The structure of the emitted hydrothermal plumes from a hydrothermal vent, which
contains two parts, i.e., buoyant plumes and non-buoyant plumes

Figure 2 shows the flow diagram of the proposed CPT algorithm. During the plume
tracing process, onboard sensors on the AUV measure AUV’s positions (x, y), flow speed
and direction (v, ϕ), chemical concentration ζ, and AUV’s current heading φ. Sensor
measurements will be fed into two modules, including a DNN (trained by DDPG or DDQN)
and traditional CPT methods. Specifically, two traditional CPT methods are implemented,
including the moth-inspired method [17] and the Bayesian-inference method [18]. Two
traditional methods will generate two heading commands, i.e., φM and φB, based on the
current sensor readings. On the other hand, the DNN also takes sensor measurements
as inputs and calculates a fusion coefficient a. Here, a is a binary number if the DNN is
trained by DDQN and a scalar if the DNN is trained by DDPG. Finally, the overall heading
command is calculated by the superposition of φM and φB, where the weights are a and
1− a, respectively.
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Figure 2. The flow diagram of the proposed CPT algorithm.

3.2. Moth-Inspired CPT Algorithm

The moth-inspired CPT algorithm is characterised in simplicity and high search
efficiency in laminar flow environments. This section reviews the classic moth-inspired
CPT method [17] that we implemented in this work.

The moth-inspired method can be summarized as the alternation of ‘surge’ and ‘casting’
behaviors. Figure 3 presents the implementation of moth-inspired CPT algorithm proposed
in [17], which further splits the ‘surge’ behavior as ‘track-in’ and ‘track-out’ behaviors.
Specifically, in the ‘track-in’ behavior (as shown in Figure 3a), the AUV detects chemical
plumes and moves upwind to approach the chemical source. In the ‘track-out’ behavior (as
shown in Figure 3b), the AUV moves outside of plume areas and tries to re-detect plumes in
the nearby of last detection location by moving across the plume trajectory. If the AUV fails
to re-detect plumes in this behavior, then the ‘casting’ behavior (in [17], this behavior was
called ‘reacquire’ behavior) is activated, which commands the robot to perform crosswind
excursions to detect chemical plumes over a large area. As shown in Figure 3c, the ‘casting’
behavior was modeled as a ‘bow-tie’ trajectory, where the AUV was commanded to move
to four points, i.e., P1 to P4 around the last plume detection location, i.e., Pctr. The AUV
will turn back to the ‘track-in’ behavior if it detects chemical plumes. The AUV repeats
these search behaviors until it finds the chemical source.

(a) (b) (c)

Figure 3. Moth-inspired search behaviors. (a) ‘Track-in’ behavior. (b) ‘Track-out’ behavior. To traverse
the plume trajectory, the robot moves to a target point (red dot). Lu and Lc are horizontal and vertical
distances from the target point to the last detection point. (c) ‘Reacquire’ behavior. The center point
(i.e., Pctr) is the last detection point. The distance from Pctr to a corner point (i.e., P1 to P4) is K and
the angle difference is θ. The robot will reach each corner point in an ascending order to complete a
‘Bow-tie’.

The ‘track-in’ behavior in the moth-inspired method CPT method can quickly guide
the AUV to approach the chemical source in a laminar flow environment. In turbulent
flow environment, the AUV cannot continuously detect chemical plumes since plume
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trajectory is not continuous but a patchy and intermittent trajectory. Therefore, the moth-
inspired method is not efficient in turbulent flow environments since the AUV can only
relay on ‘casting’ behavior to re-detect plumes. To mitigate this problem, we also include
an engineering-based method that can estimate possible chemical source locations when
the AUV loses plume contact in our CPT algorithm’s design.

3.3. Bayesian-Inference CPT Algorithm

The Bayesian-inference method [18] models the plume movements as a Gaussian
random process and estimates possible chemical source locations with sensed flow infor-
mation. In this method, the search area was divided into multiple cells, where each cell has
a probability of containing the chemical source. With the AUV maneuver, the probability of
containing the chemical source in each cell was updating based on the plume detection and
non-detection events. Figure 4 presents the source probability map in a search trial. In this
diagram, the red cell indicates the estimate source location, i.e., the cell with the highest
probability of containing the chemical source. In our previous simulation and real-world
experiments [52], we found that the Bayesian-inference CPT algorithm is more effective
than the moth-inspired CPT algorithm in a turbulent flow environment. This is because the
source estimation in the Bayesian-inference method is calculated based on the previous
plume information. When the AUV loses the plume contact, instead of randomly moving
in a wide region and hoping to detect plumes by accident, the source estimation is more
instructive to efficiently find the chemical source location since it pinpoints the possible
source location.

Figure 4. A sample source probability map generated by the Bayesian-inference method. The
searching area is divided in to multiple cells and painted with different colors. Red cells have higher
probability of containing the chemical source, and green/white cells have less (red: highest, white:
lowest) probability of containing the chemical source.

3.4. RL Basics

The standard RL setting contains an agent and an environment, and the interaction
between the agent and the environment is modeled as a Markov decision process (MDP)∼
{S ,A, P, R, γ}, where S is a set of states, A is a set of actions, P is a transition probability,
R is a reward function, and γ is a discounting factor for future rewards. Figure 5 shows a
MDP model within one time step. The agent is in a state (St = s, s ∈ S) at time t, and after
it takes an action (At = a, a ∈ A) to arrive in the next state (St+1 = s′, s′ ∈ S) with the state
transition probability P(s′|s, a), the agent will obtain a reward (Rt+1 = r, r ∈ R).
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Figure 5. A process of a MDP model in a flow diagram within one time step. Reprinted from [53],
Figure 1.1.

An episode describes how the agent interacts with the environment. The policy (π)
describes which action the agent will take in the state St. The policy can be considered as a
mapping function from state St to action At. The goal of the agent is to obtain a policy that
maximizes the cumulative reward, which can be represented as: Gt = Rt+1 +γRt+2 + · · · =
∑∞

k=0 γkRt+k+1.
The value function is a prediction of the future reward. There are two kinds of value

functions: state-value function and action-value function. The state-value function (i.e.,
Vπ(s)) evaluates the goodness of the agent being in a state s, and the action-value function
(i.e., Qπ(s, a)) evaluates the goodness of the agent performs an action a in a state s. Math-
ematically, Vπ(s) is the expectation of the return (total future rewards) starting from the
current state St, and then following the policy π: Vπ(s) = Eπ [Gt|St = s]; Qπ(s, a) is the
expectation of the return starting from state s, taking the action a, and then following the
policy π: Qπ(s, a) = Eπ [Gt|St = s, At = a].

4. Deep RL-Based CPT Algorithms

Both DDQN and DDPG belong to model-free RL algorithms (i.e., deep RL), where
the main difference is that DDQN has a discrete action space, and DDPG has a continuous
action space. This section presents how to implement these two deep RL algorithms to
train a DNN that can fuse heading commands of traditional CPT methods.

4.1. DDQN-Based CPT Method

The DDQN algorithm originates from the Q-learning and deep Q-network (DQN). In
the Q-learning algorithm, every state-action pair has an action-value function, i.e., Q(s, a).
At every time step, the agent selects the action with the highest action-value function, i.e.,
a = arg maxa∈A Q(s, a). However, if the state space is large, iterating all state-action pairs
becomes time-consuming and even impossible. To solve this problem, DQN [11] trained a
DNN to calculate action-value functions for arbitrary state-action pairs, i.e., Q(s, a). Thus,
instead of calculating action-value functions for all state-action pairs in every time step, the
agent relies on a DNN to estimate the action-value function for a given state-action pair.
Two important ingredients are used in the DQN method to stabilize the training process,
including the use of the target network and a experience replay.

Double Deep Q-Network [19] is a variant of DQN. In DQN, the target Q value is
calculated based on the maximal action-value function, i.e., maxa′ Q̂∗(s′, a′). This calcula-
tion introduces an overestimation in action-value functions and results in overoptimistic
value estimates. Due to this reason, DDQN is proposed to reduce overestimations by
decomposing the max operation in the target into two steps, i.e., action selection and action
evaluation. In DDQN, the target is calculated as Q̂(s′, arg maxa Q(s′, a)). This equation
contains two steps: (1) action selection: the agent chooses an action a that results in the
maximal Q(s′, a); (2) action evaluation: the target network Q̂ estimate the action-value
function based on the proposed action a.

Algorithm 1 presents the DDQN training algorithm. To adapt the DDQN algorithm
into the CPT problem, we select the state s as sensor measurements. Onboard sensor
measurements include flow speed and direction (v, ϕ), AUV’s speed and heading (u, φ),
and chemical plume concentration ζ. In choosing state variables, we convert angle-related
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variables, including flow direction (ϕ) and AUV heading angles (φ) to vector forms, such
as vx = v cos ϕ, vy = v sin ϕ, ux = u cos φ, and uy = sin φ. This is because angles do not
make a good DNN input: one angle could refer to two different values, such as −π and
π, and angles should not matter if the corresponding speed is zero. Besides, we select the
plume non-detection period δt as one of the states since it can reflect whether the AUV is
maintaining inside plumes (δt = t− tlast, where tlast is the last plume detection time). In
summary, the state s can be presented as

s = {vx, vy, ux, uy, δt}. (1)

There are two possible actions in the action space, i.e., A = {a0, a1}. When the action
a0 is activated, the AUV will select the moth-inspired method as the current CPT algorithm,
and if a1 is activated, the AUV will choose the Bayesian-inference method as the current
CPT strategy. We define reward functions as follows:

R(s, a) =


1 Concentration above threshold
0 Concentration below threshold
100 Find the source
−100 Run out of time or move outside.

(2)

Algorithm 1 DDQN Training Method

1: Inputs: sensor measurements s = {vx, vy, ux, uy, δt}
2: Outputs: fusion coefficient a
3: Initialize replay memory D to capacity N.
4: Initialize action-value function Q with random weights θ.
5: Initialize target action-value function Q̂ with weights θ−.
6: for episode 1,2,3,. . . ,M do
7: for t=1,2,3,. . . ,T do
8: With the probability ε select a random action a;
9: otherwise select a = arg maxa∈A Q(s, a; θ).

10: Execute the action a and observe reward r and s′.
11: Store transition (s, a, r, s′) in D.
12: Sample a mini-batch of L transitions {(sj, aj, rj, sj+1)}L

j=0 from D.
13: Set yj = rj if the episode ends at j + 1;
14: otherwise, set yj = rj + γQ̂(sj+1, arg maxa Q(s′, a; θ); θ−).
15: Preform a gradient descent step on (yj −Q(sj, aj; θ))2 with respect to θ.
16: Every C steps, reset Q̂ = Q.
17: end for
18: end for

We consider that the AUV finds the source if the distance between the AUV and the
source is less than a threshold (3 m in the simulation program). Hyper-parameters in
Algorithm 1 are defined as follows: N = 50,000, L = 64, ε = 0.05, γ = 0.9, and C = 20,
where N is the size of the replay buffer, L is the size of the mini-batch, ε is the probability
of choosing random actions, γ is the discount factor, and C is the frequency of updating
the target Q network. The architecture of the implemented DNN is presented in Figure 6,
which is a 5-layer feedforward neural network with the ReLU activation function [54].
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Figure 6. The architecture of the implemented DNN. The dense layer is a fully connected neural
network, and the activation function is ReLU [54].

4.2. DDPG-Based CPT Method

The original DDPG algorithm employs the actor-critic architecture. There are two
DNNs in the original DDPG algorithm, including an actor DNN and a critic DNN. The
actor DNN calculates an action a (a continuous variable) based on the current state s, and
the critic DNN calculates the action-value function Q(s, a) to evaluate the actor’s action
selection. The goal of the actor network is to choose an action that maximizes the action-
value function, and the critic network aims to improve the accuracy of estimate the expected
reward return. Similar to the DDQN algorithm, the DDPG algorithm also utilizes the target
networks and experience replay to stabilize the training process. Specifically, both actor
and critic networks have target networks. Target networks are initialized as clones of actor
and critic networks and get updated gradually in a rate of τ during the training process.
Transitions, i.e., (s, a, s′, r), in an episode will be stored in a replay memory for repeatedly
using during the training process.

Algorithm 2 presents the DDPG training algorithm. Specifically, the state s is identical
to the one in the DDQN-based CPT algorithm, i.e., s = {vx, vy, ux, uy, δt}. The action
calculated by the actor network is a scalar, ranging from 0 to 1. This scalar is the fusion
coefficient that will be used to combine heading commands generated by two traditional
CPT methods. Besides, the DDPG employs the same reward function as defined in the
DDQN algorithm (see Equation (2)), i.e., the AUV receives positive rewards if it detects or
find hydrothermal vent locations and negative rewards if it runs out of search time limit or
moves out of the search area. The random noise N is modeled as a Gaussian white noise
with zero mean and 10 variance. The purpose of adding random noise on the action allows
the agent to explore more actions and states during the training.

Similar to the previous DDQN algorithm, we consider the AUV finds the hydrothermal
vent if the AUV’s position is within a small region of the hydrothermal vent (3 m in
the simulation program). The output of the critic network is the action-value function
associated with the current state s and action a. Hyper-parameters in Algorithm 2 are
defined as follows: N = 50,000, L = 64, γ = 0.9, and τ = 0.005. Figure 7 presents the
employed actor and critic networks in the DDPG algorithm. Both DNNs contains 5 dense
layers, i.e., fully connected neural networks. Specifically, inputs of the actor network is
state s, defined based on AUV’s sensor measurements, and the output is an action a, i.e., a
fusion coefficient that ranging from 0 to 1. The critic network’s inputs include state s and
the ation a. Each input is processed by two dense layers and then concatenated together to
feed into three dense layers. The output of the critic network is the action-value function
Q(s, a). The activation function in the actor and critic networks is ReLU.
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(a) (b)

Figure 7. DNNs employed in the DDPG algorithm: (a) the actor network; (b) the critic network.

Algorithm 2 DDPG Training Method

1: Inputs: sensor measurements s = {vx, vy, ux, uy, δt}
2: Outputs: fusion coefficient a
3: Initialize critic network Q(s, a; θQ) and actor network µ(s; θµ) with weights θQ and θµ.
4: Initialize target network Q̂ and µ̂ with weights θQ̂ ← θQ; θµ̂ ← θµ.
5: Initialize replay memory D to capacity N.
6: for episode = 1,2,3,. . . ,M do
7: Initialize a random noise N for exploration.
8: Receive initial state s.
9: for t=1,2,3,. . . ,T do

10: Select an action a = µ(s; θµ) +N .
11: Execute the action a and observe reward r and a new state s′.
12: Store transition (s, a, r, s′) in D.
13: Sample a random mini-batch of L transitions {(sj, aj, rj, sj+1)}L

j=0 from D.
14: Set yj = rj if the episode ends at j + 1;

15: otherwise, set yj = rj + γQ̂(sj+1, µ̂(sj+1; θµ̂); θQ̂)
16: Update the critic network by minimizing the loss:

Loss = 1
L ∑L

j=0(yj −Q(sj, aj; θQ))2

17: Update the actor network by using the sampled policy gradient:

∇θµ J ≈ 1
L ∑L

j=0∇aQ(s, a; θQ)|s=sj ,a=µ(sj)
∇θµ µ(s|θµ)|sj

18: Update the target networks:

θQ̂ ← θQ̂(1− τ) + θQτ
θµ̂ ← θµ̂(1− τ) + θµτ

19: end for
20: end for

5. Simulation and Results

In this section, we evaluate the effectiveness of the proposed CPT algorithms and
compare the search results with traditional moth-inspired [17] and Bayesian-based [18]
methods (without the fusion) in a simulation program.

5.1. Simulation Setup
5.1.1. Simulated Environment

The simulation program used in this work was built based on [8]. This simulation
program can present graphical animation to show how chemical plumes develop and how
the agent searches the chemical source in the search environment. The simulation includes
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a time-varying flow field, a coherent chemical plume trajectory, and a full six degree of
freedom autonomous vehicle dynamics. This simulation program is also utilized by [55–59]
to study CPT algorithms.

Figure 8 shows the search area in the simulation. The size of the search area is
100× 100 m2. A coordinate (x− y) is constructed to represent positions. Under the coordi-
nate, the hydrothermal vent is located at (20, 0) m and releases 10 filament packages (i.e.,
plumes) per second. Grey dots in the center represent released plumes and form a curvy
plume trajectory. Arrows in the background represent flow vectors, where an arrow points
to the flow direction and the length of an arrow indicates the strength of flow velocity. In
this simulator, flow vectors are calculated from time-varying boundary conditions that are
generated by a mean flow (U0) and a Gaussian white noise (zero mean and ς variance). By
changing values of U0 and ς, different amplitudes of airflow fields can be obtained. Figure 9
shows examples of two different flow environments: a laminar airflow environment was
created with U0 = (1, 0) m/s and ς = 0 in Figure 9a, and in Figure 9b, a turbulent airflow
environment was generated with U0 = (2, 0) m/s and ς = 20.

Figure 8. A snapshot of the simulated search area. The search area is 100× 100 m2. The odor source
in this snapshot is located at (20, 0) m. The grey dots in the center of the diagram represent the
emitted chemical plumes, and the arrows in the background indicate the flow direction and speed.

(a) (b)

Figure 9. Airflow fields and corresponding odor plume trajectories in the simulation. (a) Laminar
Flows. (b) Turbulent Flows.

5.1.2. Vehicle Assumptions

In the simulation program, the vehicle dynamic is modeled based on a real-world
AUV, i.e., the REMUS 100 AUV [60]. Comparing to the large scale of the search area, the
size of the AUV is negligible. Therefore, the AUV is approximated as a single point in
the simulation program. It is assumed that the AUV is equipped with a chemical sensor,
a flow sensor, and a positioning sensor, which measure chemical plume concentrations
at the AUV position, water flow speeds and directions in the inertial frame, and AUV
positions in the inertial frame, respectively. To mimic the real-world applications, all
sensors’ measurements are corrupted with Gaussian white noises. The noise parameters
are listed in Table 1. The proposed CPT algorithms are implemented on an onboard
computer to process sensor readings and calculate the heading commands, which is limited
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in a range of φc = [−90◦, 90◦]. The AUV’s velocity set as a constant to simplify the control
problem, i.e., 1 m/s.

Table 1. Gaussian Noises in the Simulated Sensor Measurements. (mmpv: million molecules per m3).

Chemical Sensor Flow Sensor Positioning Sensor

Mean 0 0 0
Standard Deviation 0.05 mmpv 0.1 m/s and 1◦ 0.1 m

5.2. Training Results

The proposed DDQN- and DDPG-based CPT algorithms were trained in the afore-
mentioned simulation program. Specifically, each algorithm was trained 4000 episodes.
For each training episode, the AUV initial position (x0, y0) was randomly sampled at
the downflow area of the hydrothermal vent (i.e., x0 ∈ [30, 80] m and y0 ∈ [−40, 40] m),
and the flow condition in the search environment varied. The training time for a single
algorithm was around 4 h on a workstation computer with an Intel Core i9 CPU and
Nvidia RTX 3090 GPU.

Figure 10 presents the averaged reward plots for the proposed DDQN- and DDPG-
based CPT algorithms. We can see that both plots maintain at a high value after around
200 episodes, indicating the agent achieved a high success rate of finding hydrothermal
vents. Besides, the averaged reward obtained by the agent trained by DDQN is higher than
the DDPG counterpart. This is because the proposed DDQN-based CPT algorithm switches
between moth-inspired and Bayesian-inference methods during the search, which is more
instructive than the fusion of heading commands in the DDPG-based CPT algorithm. In
the early training episodes, the fusion coefficient calculated by the DDPG’s actor network
deteriorates the search efficiency since two traditional CPT methods may propose two
opposite heading commands, and the fusion of two commands leads the AUV to an
erroneous direction.
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Figure 10. Averaged reward plots for the proposed (a) DDQN-based CPT algorithm and (b) DDPG-
based CPT algorithm. Each point on the plots is a running average with a window size of 40, i.e., an
unweighted mean of previous 40 data points. The first 40 points in the plots are unweighted mean of
previous points.

5.3. Simulation Results in Laminar Flow Environments

We first implement the proposed DDQN- and DDPG-based CPT algorithms in laminar
flow environments where U0 = (1, 0) m/s and ς = 2. We first present a sample search,
performed by the proposed deep RL-based CPT algorithms. In the sample run, the AUV
initial position is at (60,−40) m, and the source location is at (20, 0) m.

5.3.1. Sample Run of the Proposed DDQN-Based Algorithm

Figure 11 presents the snapshots of search trajectories generated by the DDQN-based
CPT algorithm. As we can see in Figure 11a, the AUV employed the ‘zigzag’ search
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trajectory to search plumes for the first time. Details of the ‘zigzag’ behavior can be found
in [52], which can be summarized as follows: the AUV will head in a crosswind direction
and bounce inward the search area when it arrives at the boundaries of the search area. At
t = 48 s, the AUV contacted plumes for the first time and switched to the proposed DDQN-
based CPT algorithm. At this time, the DNN selected the Bayesian-inference method as the
search algorithm. Thus, the AUV moves to the red region in the search area as presented in
Figure 11b, which is the region with the highest probability of containing the hydrothermal
vent. From t = 48 s to t = 64 s, the AUV was directed by the Bayesian-inference method
to move upflow since the DNN’s output is 1. After t = 64 s, the DNN’s output becomes
a0, commanding the AUV to follow the moth-inspired method to quickly approach the
source location. As indicated in Figure 11d, the AUV correctly find the hydrothermal vent’s
location at t = 78 s.

(a) (b) (c) (d)

Figure 11. Snapshots of search trajectories generated by the DDQN-based CPT algorithm at
(a) t = 28 s, (b) t = 48 s, (c) t = 64 s, and (d) t = 78 s. The AUV starts at the (60,−40) m, and
the hydrothermal vent locates at (20, 0) m.

5.3.2. Sample Run of the Proposed DDPG-Based Algorithm

Figure 12 presents the snapshots of search trajectories generated by the DDPG-based
CPT algorithm. Similar to the DDQN-based CPT algorithm, the AUV successfully finds the
hydrothermal vent’s location at the end of the search. Comparing to the DDQN counterpart,
the DDPG commands the AUV to use moth-inspired CPT algorithm in the most of search
time (i.e., the fusion coefficient is larger than 0.5). Specifically, the AUV first employed the
‘zigzag’ search trajectory to find the existence of plumes in the environment. At t = 45 s, the
AUV detected plumes for the first time and switched to the DDPG-based CPT algorithm.
As indicated in Figure 12c, the AUV stayed inside plumes and moved upflow to approach
the source location. At t = 71 s, the AUV correctly found the source location.

(a) (b) (c) (d)

Figure 12. Snapshots of search trajectories generated by the DDPG-based CPT algorithm at
(a) t = 32 s, (b) t = 45 s, (c) t = 61 s, and (d) t = 71 s. The AUV starts at the (60,−40) m, and
the hydrothermal vent locates at (20, 0) m.

5.3.3. Repeated Tests in Laminar Flows

We also implemented the proposed deep RL-based CPT algorithms in repeated tests
and compared the statistic results with traditional CPT algorithms. Four CPT algorithms,
including DDQN, DDPG, moth-inspired, and Bayesian-inference methods were imple-
mented in the simulation program, and each method was repeatedly performed 100 times.
In repeated tests, the AUV initial position (x0, y0) was selected from four possible candi-
dates, including (60,−40) m, (80,−30) m, (60, 40) m. and (50, 20) m. The AUV performed
25 trials at each initial position with four CPT algorithms, i.e., the proposed DDQN, DDPG,
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the traditional moth-inspired, and Bayesian-inference methods. The search time limit for
a trial is 400 s. If the AUV cannot find the hydrothermal vent within the time limit, this
trial will be considered as an unsuccessful trial in locating the hydrothermal vent. Table 2
presents the results of repeated tests.

From Table 2, we can see that the proposed DDQN-based CPT algorithm outperforms
traditional moth-inspired and Bayesian-inference methods, where the success rate of the
DDQN is 100 % versus 99% for the traditional moth-inspired and 90% for the Bayesian-
inference method. The averaged search time for the DDQN is also shorter than two
traditional methods. The proposed DDPG-based CPT algorithm achieves a better search
performance than the Bayesian-inference method, where the success rate is 98% versus
90% for the Bayesian-inference method and the averaged search time is 3 s shorther than
the Bayesian-inference counterpart. As for two traditional methods, we can see that the
moth-inspired method achieves a shorter averaged search time than the Bayesian-inference
method thanks to the effective ‘track-in’ behavior that can quickly lead the AUV to move
upflow and approach the hydrothermal vent. The proposed DDQN-based CPT algorithm
outperforms the moth-inspired method, indicating the effectiveness of the proposed DDQN-
based CPT algorithm and the idea that combining bio-inspired and engineering-based
methods benefits in improving the search performance.

Table 2. Statistic Results of Repeated Tests in Laminar Flow Environments.

DDQN DDPG Moth-Inspired Bayesian-
Inference

Success Rate 100/100 98/100 99/100 90/100
Avg. Search

Time (s) 88.5 105.8 97.7 108.8

Standard
Deviation 42.6 86.9 54.2 98.3

5.4. Simulation Results in Turbulent Flow Environments

In this section, the proposed deep RL-based CPT algorithms will be implemented in
turbulent flow environments, where U0 = (1, 0) m/s and ς = 10. Similar to the previous
group of tests, we first present sample runs of the proposed CPT algorithms in turbulent
flow environments. The AUV initial position is at (60,−40) m, and the source location is at
(20, 0) m.

5.4.1. Sample Run of the Proposed DDQN-Based Algorithm

Figure 13 presents the snapshots of search trajectory generated by the DDQN-based
CPT algorithm. Specifically, the AUV adapted the ‘zigzag’ search trajectory to find chemical
plumes in the search environment and detected chemical plumes for the first time at t = 50 s
as indicated in Figure 13a. At t = 65 s, the AUV adapted the Bayesian-inference method
as commanded by the DDQN-based CPT algorithm and moved to the estimated source
location (i.e., the red region in Figure 13b). At t = 113 s, the AUV did not detect chemical
plumes at the estimated source location and updated the source estimate as presented in
Figure 13c. At t = 174 s, i.e., Figure 13d, the AUV switched to the moth-inspired method
and successfully detected the chemical plumes. At t = 244 s, the AUV switched back into
the Bayesian-inference method and correctly found the hydrothermal vent’s location, as
presented in Figure 13e.
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(a) (b) (c) (d) (e)

Figure 13. Snapshots of search trajectory generated by the DDQN-based CPT algorithm at (a) t = 50 s,
(b) t = 65 s, (c) t = 113 s, (d) t = 174 s, and (e) t = 244 s. The AUV starts at the (60,−40) m, and the
hydrothermal vent locates at (20, 0) m.

5.4.2. Sample Run of the Proposed DDPG-Based Algorithm

Figure 14 shows the snapshots of search trajectory produced by the DDPG-based CPT
algorithm. From these diagrams, we can see that the plume trajectory (i.e., black particles)
is very curvy due to the turbulent flows. Thus, it will be very inefficient if the AUV chooses
the moth-inspired method since the AUV will spend a lot of time on the ‘casting’ behavior
to re-detect plumes.

(a) (b) (c) (d) (e)

Figure 14. Snapshots of search trajectories generated by the DDPG-based CPT algorithm at
(a) t = 37 s, (b) t = 87 s, (c) t = 117 s, (d) t = 165 s, and (e) t = 213 s. The AUV starts at the
(60,−40) m, and the hydrothermal vent locates at (20, 0) m.

In this test, we observed that the DDPG’s output, i.e., the fusion coefficient, is 0 in most
of the search time, indicating that the DDPG selected the Bayesian-inference method over
the moth-inspired method, considering that the Bayesian-inference method is more effective
than moth-inspired method in finding hydrothermal vents in turbulent flow environments.
This observation indicates that the DDPG algorithm learns how to choose correct search
strategy in different search environments. Specifically, the AUV detected the first plume
at t = 87 s after the ‘zigzag’ search strategy as presented in Figure 14a. From t = 87 s to
t = 117 s, the AUV was directed by the Bayesian-inference method and detected chemical
plumes several times in the nearby of the plume trajectory as indicated by Figure 14b,c.
At t = 165 s, the AUV was close to the source location thanks to the guidance of accurate
source estimate as presented in Figure 14d. In Figure 14e, the AUV correctly found the
source location at t = 213 s.

5.4.3. Repeated Tests in Turbulent Flows

To verify the effectiveness and robustness of the proposed deep RL-based algorithms
in turbulent flow environments, we implemented the proposed algorithms in repeated tests.
Similar to the tests in laminar flow environments, the AUV started at four different initial
positions, i.e., (60,−40) m, (80,−30) m, (60, 40) m, and (50, 20) m. Besides the proposed
deep RL-based algorithms, the traditional moth-inspired and Bayesian-inference methods
were also implemented in this group of tests. Table 3 lists statistic results of the proposed
deep RL-based CPT algorithms and traditional methods in repeated tests. As we can see,
the DDQN-based CPT algorithm achieves the best performance in this group of tests, where
the success rate is 94 % in 100 tests and the averaged search time and standard deviation
are 96.3 s and 68.5, respectively. The DDPG-based algorithm also outperforms traditional
methods in turbulent flow environments, where the success rate is 90%, averaged search
time is 163.25 s, and standard deviation is 115.3. Statistic results in repeated tests show the
effectiveness of the proposed deep RL-based algorithms in turbulent flow environments.
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Table 3. Statistic Results of Repeated Tests in Turbulent Flow Environments.

DDQN DDPG Moth-Inspired Bayesian-
Inference

Success Rate 94/100 90/100 62/100 70/100
Avg. Search

Time (s) 96.3 163.25 295.2 206.2

Standard
Deviation 68.5 115.3 134.6 156.1

5.5. Discussion

We compared our proposed methods with an end-to-end RL algorithm proposed
in [13]. According to the reported search performance (i.e., Table 1 in [13]), our proposed
method achieved a comparable search performance in terms of the success rate. The highest
success rate in [13] is 98.81% (the number of repeated tests is unspecified in [13]), and our
double deep Q-network method achieved a 100% success rate in 100 repeated tests (see
Table 2). It is also worth mentioning that our neural network structure is much simpler
than the one proposed in [13], which needs less calculation time to process the input data.

We also evaluated the search performance of proposed methods in different source
locations. Figure 15 shows snapshots of four trials with different source locations, including
(20,−10) m, (10, 20) m, (40, 10) m, and (20,−20) m. We can see that the AUV successfully
reached the hydrothermal vent location at the end of each trial. Simulation results reflect
the effectiveness of the proposed CPT algorithms. In the future, we plan to implement
the proposed CPT algorithms in real-world environments and study on more complicated
search scenarios, such as searching with multiple AUVs and multiple odor sources.

(a) (b) (c) (d)

Figure 15. Snapshots of search trajectories in four trials with different source locations: (a) source is at
(20,−10) m; (b) the source is at (10, 20) m; (c) the source is at (40, 10) m; (d) the source is at (20,−20)
m. We can see that the AUV can correctly find the source location no matter how it changes.

6. Conclusions

In this paper, we present two deep RL-based CPT algorithms. Two deep RL algorithms,
including DDQN and DDPG, are employed to design CPT algorithms for using on AUVs
to locate underwater hydrothermal vents. Considering the low sample efficiency of deep
RL algorithms, we employed deep RL algorithms to train DNNs that calculates a fusion
coefficient to combine two traditional CPT algorithms, i.e., moth-inspired and Bayesian-
inference methods. Specifically, the DDQN algorithm selects one search strategy from two
traditional methods during the search process, while the DDPG algorithm calculates a
fusion variable that combines two traditional methods in a superposition format. Based
on simulation tests, we found that both deep RL-based algorithms are effective in finding
hydrothermal vents in both laminar and turbulent flow environments. Besides, comparing
to traditional CPT algorithms, i.e., without the fusion, the search performance is improved
in terms of the averaged search time and success rate. In laminar flow environments,
both DDQN- and DDPG-based CPT algorithms achieve a high success rate (>90%) in
100 repeated trials. In turbulent flow environments, our proposed DDQN achieved the
best performance, which improves the search success rate by 67% compared to the moth-
inspired method and 34% compared to the Bayesian-inference method. Simulation results
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indicate the effectiveness of the proposed CPT methods in both laminar and turbulent flow
environments.
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