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 A B S T R A C T

Recent progress in machine learning (ML) and molecular simulations has made it possible to rapidly explore 
new formulations of Diamine-Hardened Epoxy-Based Thermoset Shape Memory Polymers (SMPs). However, 
accurate thermomechanical modeling, which is crucial for guiding the design of these advanced materials, 
still heavily relies on extensive experiments and simulations that are both time-consuming and costly. In this 
study, we propose a deep learning (DL) framework that integrates Graph Neural Networks (GNNs) and Time 
Series Transformers to accurately predict moving-averaged recovery stress in diamine-hardened epoxy-based 
thermoset SMPs. Specifically, a Graph Transformer is employed to encode atomic and bonding information 
derived from molecular SMILES (Simplified Molecular Input Line Entry System) representations into graph 
embeddings, which are dynamically updated and combined with sequential experimental data via a Time 
Series Transformer. Our model was trained end-to-end on molecular dynamics simulation data and validated 
across multiple epoxy–hardener formulations. The proposed approach consistently outperformed traditional 
deep learning models and achieved superior predictive accuracy, with a Root Mean Squared Error (RMSE) as 
low as 0.1895 and a Pearson Correlation Coefficient (PCC) of up to 1.000 on unseen datasets. These results 
highlight the significant potential of our framework to reduce dependency on extensive laboratory trials, and 
provide a robust, efficient, and scalable solution for rapid exploration and optimization of next-generation 
epoxy-based thermoset SMPs.
1. Introduction

Shape memory polymers (SMPs) are smart materials known for 
their unique ability to return to their original shapes after plastic 
deformation when triggered by external stimuli such as heat, light, 
electric currents, or changes in pH, electric, or magnetic fields [1,2]. 
This distinctive shape-memory effect arises from cross-linked polymer 
networks, which store elastic energy during deformation and release 
it upon stimulation to recover the original shape. Due to their re-
sponsiveness to multiple stimuli, SMPs are increasingly utilized in 
advanced fields such as biomedical applications, aerospace engineering, 
structural composites, and smart textiles [3–5].

Although SMPs offer significant potential, further developments 
are required to improve their properties and expand their applica-
tion scope. Designing and validating new SMP formulations typically 
involve synthesizing novel polymers through a bottom-up approach, 
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followed by extensive experimental testing to confirm desired char-
acteristics. This conventional process requires considerable time, spe-
cialized expertise, and significant resources, thus it is inefficient and 
expensive for rapid material development [6].

To address this, our objective is to develop a deep learning frame-
work that can accurately predict the moving-averaged recovery stress, 
a key thermomechanical property, of SMPs based on their molecular 
structure and experimental conditions. The motivation is to smooth 
out the rapid and noisy fluctuations inherent in the raw stress data 
by using a moving-averaged recovery stress. Our goal is not to repro-
duce every detail of, molecular dynamic (MD) simulations or experi-
ments, but rather to accelerate polymer discovery by rapidly predicting 
structure-property trends across numerous formulations.

Accurate characterization of thermomechanical properties, partic-
ularly recoverable stress, is essential for guiding the design of SMPs, 
as it measures the polymer’s capability to regain its original shape 
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data mining, AI training, and similar technologies. 
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under external load following deformation. Thermomechanical anal-
ysis (TMA) is commonly employed to characterize these properties. 
TMA continuously records stress and strain responses while carefully 
varying temperature and external load, and provides insights into real-
world behavior. Although TMA provides precise characterization, the 
necessity of performing repeated experiments for each unique SMP 
formulation introduces significant challenges. This iterative process de-
mands considerable time, specialized resources, and high costs, thereby 
severely constraining the efficiency and speed of developing novel SMP 
materials.

Thermoset SMPs, in particular, are notable due to their permanent 
chemical cross-links that create rigid and stable polymer networks 
capable of robust shape recovery through internal stress rearrangement. 
The thermomechanical performance of thermoset SMPs, particularly 
their recovery stress, significantly depends on chemical composition, 
molecular weight, and cross-link density. Thermoset SMPs, specifically 
those that combine high recovery stress with moderate glass transition 
temperatures, are particularly valued in additive manufacturing (AM), 
which significantly broadens their potential applications to deployable 
structures, robotics, and self-healing materials [6–9].

Specifically, diamine-hardened epoxy-based thermoset SMPs de-
rived from diglycidyl ether epoxy resins (e.g., Diglycidyl Ether of 
Bisphenol A, DGEBA) have received significant attention due to their 
exceptional mechanical properties, chemical resistance, and tunable 
shape-memory characteristics [6–9]. Adjusting epoxy–hardener com-
binations enables precise control over critical properties, such as me-
chanical strength, curing behavior, thermal stability, and shape re-
covery. Despite these promising attributes, the inherent brittleness of 
these epoxy-based SMPs poses a significant challenge, as high stress 
conditions can initiate cracks that propagate through their densely 
cross-linked networks and eventually causes material failure [10]. Ex-
perimentally exploring numerous epoxy–hardener combinations us-
ing traditional methods thus remains impractical and economically 
restrictive [11].

To overcome limitations associated with experimental approaches 
and the scarcity of comprehensive thermomechanical data, MD sim-
ulations offer an alternative for systematic data generation. Recent 
studies have effectively employed MD simulations to investigate cross-
link behavior, thermomechanical cycles, and moving-averaged recov-
ery stress correlations in epoxy–hardener SMP systems. For instance, 
MD simulations have revealed significant correlations between molecu-
lar modifications, such as variations in backbone length and side-chain 
structures, and moving-averaged recovery stress. These findings indi-
cate that mechanical performance strongly depends on molecular-scale 
design choices.

Traditional thermomechanical modeling methods, including consti-
tutive models e.g., Maxwell–Weichert [12] or Vogel–Fulcher–Tammann 
frameworks [13], typically depend heavily on experimental data for pa-
rameter fitting. This heavy reliance limits their generalizability across 
diverse polymer formulations. Similarly, micromechanics-based and fi-
nite element analysis (FEA) models, despite their effectiveness, have in-
herent constraints from assumptions and predefined parameters, which 
limit their adaptability for novel materials and dynamic conditions [8,
9,14].

Recent advances in machine learning (ML), particularly deep learn-
ing (DL), have emerged as promising alternatives in materials science 
due to their computational efficiency and rapid predictive capabilities 
compared to traditional simulation techniques like MD and density 
functional theory (DFT) [15,16]. ML methods have demonstrated sig-
nificant success across various material classes, optimizing properties 
such as mechanical strength in metal alloys [17], thermal conductivity 
in polymers [18], dielectric constants [19], and precisely targeted 
glass transition temperatures [20–23]. Additionally, ML-based consti-
tutive modeling has shown substantial potential to capture complex 
mechanical behaviors of engineering materials, including solids and liq-
uids, by employing supervised learning alongside physically informed 
constraints [24–27].
2 
Combining ML with MD simulations has become an efficient path-
way to expedite material discovery [6,28]. While MD simulations sys-
tematically investigate cross-linking behavior, thermomechanical cy-
cles, and recovery stress, ML techniques leverage these simulation-
generated or experimental datasets to predict optimal polymer formula-
tions, significantly reducing the need to synthesize and experimentally 
validate every candidate. Molecular fingerprinting is a prominent ap-
proach in this context, translating each epoxy–hardener combination 
into atomistic descriptors, such as bond angles, ring structures, or 
partial charges. ML algorithms utilize these descriptors to correlate 
structural features with mechanical or shape-memory performance. 
However, despite a general theoretical understanding of how poly-
mer structure influences their properties, accurately capturing and 
predicting the detailed molecular and topological structures remains 
challenging due to the complexity of computational modeling and the 
extensive time required for experimental validation.

Despite recent developments, accurately modeling the complex ther-
momechanical behavior of SMPs remains challenging. Current DL and 
ML approaches predominantly focus on temporal features alone and 
often overlook essential structural information derived from molec-
ular configurations. Furthermore, gathering the substantial amount 
of experimental data required for ML training is costly and time-
consuming due to the vast chemical space of potential epoxy–hardener 
formulations [11]. This limitation restricts predictive accuracy and gen-
eralization capabilities across diverse polymer systems. Consequently, 
there is a critical need for methods that effectively integrate struc-
tural characteristics with temporal data to enhance the precision and 
robustness of predictions.

To address this gap, we introduce a novel DL framework that inte-
grates structural information extracted from molecular SMILES (Simpli-
fied Molecular Input Line Entry System) representations with temporal 
experimental data (temperature, time, and length) to accurately predict 
moving-averaged recovery stress, a critical thermomechanical property, 
in diamine-hardened epoxy-based thermoset SMPs. Our aim is to de-
velop a DL framework for moving-averaged recovery stress prediction 
based on molecular and temporal features, which can accelerate the 
design of new SMP formulations. Specifically, our method employs a 
Graph Neural Network (GNN) to encode atomic and bonding character-
istics of epoxy–hardener compositions into detailed graph embeddings. 
These embeddings, dynamically updated with sequential experimental 
data, are processed through a Time Series Transformer to predict 
moving-averaged stress behavior with high accuracy, as illustrated 
in Fig.  1. By structuring the input data into sliding windows of 𝑛
consecutive time steps, our model predicts the moving-averaged stress 
at the final step of each window. This approach captures both structural 
and temporal dependencies within an end-to-end training framework 
and significantly enhances predictive performance and generalization 
across different polymer formulations.

The key contributions of this work can be listed as follows:

• We introduce a method to represent the SMILES strings of epoxy 
resins and hardeners into detailed graph representations, that 
encode the atom and bond features of the molecules.

• We develop graph transformer, a GNN based model, to capture 
the structural information and generate the graph embedding 
from the molecular graphs of epoxy–hardener.

• We propose a DL framework that integrates the Graph Trans-
former with a Time Series Transformer to predict the moving-
averaged recovery stress of epoxy-hardener compositions and 
train the model in an end to end manner, to preserve the struc-
tural information as well as the temporal dependencies.

2. Methodology

2.1. Data collection and overview

The dataset used in this study is obtained from previously published 
MD simulations of amine-hardened epoxy-based thermoset SMPs [31,
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Fig. 1. An overview of the proposed methodology for predicting moving-averaged recovery stress of the composition of epoxy resins and hardener. The method generates graph 
representations from SMILES strings of the materials and takes them as input into the Graph Transformer model [29] that gives the graph embedding. This graph embedding 
combined with the temporal data pass through the Time Series Transformer [30] to predict the final output.
Table 1
Summary of temporal features for each epoxy–hardener SMP formulation.
 Feature Description  
 Time Discrete time steps at which the polymer’s response is 

recorded.
 

 Temperature The heating and cooling process that controls polymer 
softening and hardening for shape recovery.

 

 Length Macroscopic sample dimension along the loading axis, 
changes with time and temperature.

 

 Moving-averaged 
stress

A smoothed measure of recovery stress, quantifying the 
material’s ability to regain its shape after deformation.

 

32]. These simulations capture the complete thermomechanical cycle 
of each epoxy–hardener formulation, including loading, relaxation, 
heating, and cooling, thereby provide comprehensive insights into the 
material response under realistic conditions.

2.1.1. Structural data
Structural data describes the detailed chemical composition and 

bonding connectivity of each epoxy–hardener system. In our work, this 
data is represented at the molecular level using SMILES strings [33,34]. 
SMILES strings offer a standardized, linear notation that concisely en-
codes critical molecular features such as backbone modifications, ring 
structures, and side-chain polarity. This uniform representation enables 
us to systematically capture variations in chemical structure (e.g., dif-
ferences in backbone length, ring substituents, or polarity) across the 
diverse formulations, which is essential for accurate modeling of the 
thermomechanical behavior.

2.1.2. Temporal data
Temporal data captures the time-dependent behavior of the poly-

mers during the simulated thermomechanical cycle. Specifically, a set 
of key features such as time steps, temperature profiles, sample length, 
and moving-averaged stress is recorded to characterize the dynamic 
response of the material. These features are critical for understanding 
how the polymers evolve under varying thermal and mechanical condi-
tions. Table  1 presents a summary of the temporal features and details 
both the experimental conditions and the corresponding outputs that 
reflect the material’s recovery behavior.
3 
Table 2
Epoxy resins used in this study.
 Epoxy Compound name Description  
 DGEBA Diglycidyl ether of 

Bisphenol A
Widely used commercial epoxy known 
for high recovery stress and mechanical 
strength.

 

 DGEBF Diglycidyl ether of 
Bisphenol F

Bio-based epoxy with furan rings, 
offering enhanced thermomechanical 
properties.

 

 autoEpoxy Computationally 
designed epoxies

A set of algorithmically generated 
epoxies comprising several variants, 
optimized for molecular rigidity, thermal 
stability, and improved recovery stress.

 

2.2. Epoxy and hardener types

The selection of epoxy resins and diamine hardeners is essential for 
exploring the wide spectrum of thermomechanical behaviors in SMPs. 
Our dataset comprises both traditional commercial formulations and 
novel, custom-engineered variants, and captures a diverse range of 
chemical architectures and performance characteristics.

2.2.1. Epoxy resins
Diglycidyl ether-based epoxies generally offer robust mechanical 

properties and tunable shape-memory characteristics [6]. To broaden 
the chemical space, certain base epoxies were systematically modified 
by adjusting backbone length, side-chain polarity, and ring architec-
ture, as guided by MD insights that show aromatic content, backbone 
rigidity, and side-chain substitutions strongly affect recovery stress [31,
32]. Table  2 summarizes the primary epoxy resins used in this study.

2.2.2. Hardener
Amine-based hardeners provide the reactive sites essential for form-

ing permanent cross-links in thermoset networks, which in turn deter-
mine the network structure and mechanical performance. Table  3 lists 
the primary diamine hardeners in our dataset, each exhibits distinct 
structural features that influence key properties such as glass transition 
temperature, recovery stress, and overall thermomechanical behavior.
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Fig. 2. SMILES string to Molecular representation from composition DGEBA271-IPD. (a) Epoxy DGEBA271. (b) Hardener IPD.
Table 3
Diamine hardeners used in this study.
 Hardener Compound name Description  
 IPD Isophorone diamine Commercial diamine balancing rigidity 

and processability.
 

 APA 4-(4-Aminophenyl) 
Aniline

Aromatic diamine known to enhance 
recovery stress and thermal stability.

 

 mPDA m-Phenylenediamine Aromatic diamine contributing to high 
cross-link density and thermal stability.

 

 dMPDA Modified 
m-Phenylenediamine

Custom derivative of mPDA designed for 
enhanced mechanical stability and 
adjustable glass transition temperature.

 

 dDAP Modified 
Diaminodiphenyl

Custom derivative of DAP, designed to 
optimize recovery stress.

 

 autohardener Computationally 
Designed Hardener

Generated diamine with novel structural 
motifs for enhanced thermomechanical 
performance.

 

2.3. SMILES strings

As described in Section 2.1.1, the molecular structures of epoxy 
resins and hardeners are encoded using SMILES strings, which offer a 
concise, linear representation of atoms, bonds, ring positions, and side-
chain configurations. For example, in our work we used diglycidyl ether 
of bisphenol A (DGEBA) as an epoxy resin and isophorone diamine 
(IPD) as a hardener.

The SMILES string for DGEBA 271 (a variant of Diglycidyl Ether of 
Bisphenol A):

O2CC2COc1cc(C)c(cc1(CC))C(C)(C)c1cc(C)c(cc1(CC))
OCC2CO2

SMILES string for IPD (a diamine hardener):

CC1(CC(CC(C1)(C)CN)N)C

2.4. SMILES strings to molecular representation

The cheminformatics library RDKit was used to convert the SMILES 
strings into detailed molecular representations. This conversion ex-
tracts comprehensive information about the atoms and bond features 
of each molecular structure. Fig.  2 illustrates the transformation from 
SMILES strings to molecular structures for both the epoxy resin and the 
hardener.
4 
2.5. Molecular structures to graph representation

To effectively utilize the molecular structures of epoxy resins and 
hardeners in our proposed model, we transformed SMILES-based molec-
ular representations into structured molecular graphs. A molecular 
graph 𝐺 = (𝑉 ,𝐸) is defined by a set of nodes 𝑉 , where each node 𝑣𝑖 ∈ 𝑉
represents an atom, and a set of edges 𝐸, where each edge 𝑒𝑖𝑗 ∈ 𝐸
represents a chemical bond between atoms 𝑣𝑖 and 𝑣𝑗 . Each node 𝑣𝑖 is 
characterized by a detailed node feature vector, and each edge 𝑒𝑖𝑗 by a 
corresponding edge feature vector.

2.5.1. Node feature extraction
Node features capture essential chemical properties of individual 

atoms, providing vital contextual information for accurate molecular 
modeling. In our implementation, we employ RDKit to convert molec-
ular SMILES representations into structured molecular graphs, where 
each atom constitutes a node in the graph. For each node, we construct 
a comprehensive feature vector by integrating multiple categorical 
atom properties, each encoded using one-hot encoding.

Specifically, each node feature vector includes the atom type, the 
number of heavy atom neighbors, and the formal charge. The type 
of atom is encoded from a predefined list of 43 chemically relevant 
elements, which includes common non-metal elements such as carbon 
(C), nitrogen (N), oxygen (O) and sulfur (S), as well as selected metals 
and metalloids including magnesium (Mg), sodium (Na), calcium (Ca), 
and iron (Fe). To robustly handle rare or unanticipated elements, we 
also include an ‘‘Unknown’’ category. Consequently, each atom type is 
represented by a 43-dimensional one-hot encoded vector. Additionally, 
the number of heavy atom neighbors, defined as the count of directly 
bonded non-hydrogen atoms, is encoded into six discrete categories 
(ranging from 0 to 4, plus an additional ‘‘MoreThanFour’’ category for 
atoms exceeding four neighbors). Similarly, formal charges are encoded 
into eight distinct categories, with extreme or rare charges grouped 
under a single ‘‘Extreme’’ category. Concatenating these categorical 
encodings results in a detailed and chemically meaningful node feature 
vector of dimension 57. Node feature vectors for all atoms in a molecule 
are aggregated into a node feature matrix 𝑋 of shape [𝑁, 57], where 𝑁
denotes the total number of nodes and forms a structured input for our 
graph-based model.

2.5.2. Edge index construction
Graph connectivity is captured by constructing an edge index that 

encodes bond relationships between atoms. For every bond identified 
in the molecule, indices of the two connected atoms are recorded. 
To explicitly represent undirected bonds, each bond contributes two 
directed edges: one from atom 𝑣𝑖 to atom 𝑣𝑗 , and another in the reverse 
direction. These index pairs are collected and converted into a tensor 
of shape [2, 𝐸], where 𝐸 is the total number of directed edges.
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Fig. 3. Transformation from molecular structure to graph representation for the composition DGEBA271-IPD. (a) Epoxy DGEBA271. (b) Hardener IPD.
Fig. 4. An overview of window generation, where the input windows are the sequence of input features (time, temperature and length) and output features are the values of 
stress at the final time step of each corresponding input window.
2.5.3. Edge feature extraction
Edge features are computed to incorporate chemical bond char-

acteristics into the graph representation. For each edge representing 
a chemical bond, a categorical one-hot encoding is performed based 
on its type (single, double, triple, or aromatic) which results a four-
dimensional feature vector. Similar to the edge index, each edge feature 
vector is duplicated for both bond directions to maintain the undirected 
nature of chemical bonds. These edge feature vectors are then collated 
into a tensor with shape [𝐸, 4], where 𝐸 corresponds to the total 
number of directed edges.
5 
2.5.4. Graph construction
Having extracted node and edge features, the molecular graph is 

constructed by combining the node feature matrix 𝑋, the edge index 
tensor, and the edge feature matrix. Utilizing RDKit, SMILES strings 
are converted into molecular objects from which atom-level and bond-
level information are obtained. The adjacency information provided 
by RDKit allows identification of connected atom pairs, which form 
the basis of the edge index tensor. This tensor is associated with the 
corresponding edge feature vectors derived previously.

Finally, the node feature matrix, edge connectivity tensor, and edge 
feature matrix are consolidated into a structured data object using 
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Fig. 5. An overview of generating graph embedding from the graph representations of epoxy resins and hardener. The method takes graph representations as input into the Graph 
Transformer model that gives the graph embedding from the combination of two molecular graph structures.
PyTorch Geometric. This unified graph representation encapsulates 
comprehensive molecular structure information, enabling effective in-
tegration into our proposed model. Fig.  3 provides a visual summary 
of the transformation from SMILES-based molecular representations to 
structured graph representations, and explicitly highlights the nodes 
(atoms) and edges (bonds) for representative epoxy resin and hardener 
molecules.

2.6. Temporal data: Sequence of windows

We have data from several epoxy–hardener systems, each of these 
systems has the input features: time, temperature and length and the 
output feature: recovery stress. To train the transformer model and our 
proposed model, we normalize the dataset using a z-score normaliza-
tion which scales each of the variables into the dataset with a mean 
of 0 and a standard deviation 1. We use the normalization formula is 
follows: 
𝑧𝑖 =

𝑥𝑖 − 𝜇
𝜎

, (1)

where 𝑥𝑖 and 𝑧𝑖 are the original values and the normalized values 
respectively, 𝜇 and 𝜎 are the mean and standard deviation of the 
original data respectively.

We structure the dataset into sequence of windows where each win-
dow is comprised of 𝑛 (we called it window size) number of consecutive 
time steps of input features and the output is the corresponding target 
value of each window at the final time step of that window. As depicted 
into Fig.  4, the input windows are consisted of 3 consecutive time steps 
of input features while the output is the target value at the third time 
step of that window. The number of consecutive time steps can be 
changed based on the experiment’s requirements. In our experiments, 
we used the window size 𝑛 = 4 for all the experiments.

2.7. Graph embedding generation

In our proposed method, as presented in Fig.  5, we generate the 
graph embedding from the graph representations of the SMILES of the 
epoxy and hardener molecules. To generate the graph embedding from 
the graph representations, we concatenate the graph representations of 
the SMILES of both molecules. This concatenated graph features along 
with the temporal data goes through a GNN to generate the graph 
6 
embedding. To input the temporal data, we considered the sequence of 
windows from the time series data. Our goal was to generate different 
graph embedding at each time step of the time series data, we call 
it dynamic graph embedding. For our graph embedding generation 
we used Graph Transformer for the GNN. This is the first part of our 
proposed model where we generate the dynamic embedding, then this 
graph embedding along with the temporal data pass through another 
DL model to predict the final output. This proposed model is then 
trained in an end to end manner where the parameters in both the 
Graph Transformer and in the DL model are updated in the same 
training.

2.7.1. Graph transformer
In our Graph Transformer Networks [35], we use a fully connected 

layer to map the node features into a higher dimensional latent space. 
Then multiple Transformer convolutional layers with multi head self-
attention were applied to capture complex interactions among nodes 
which effectively aggregate multi-hop neighborhood information and 
learns adaptive complex path. After these layers, we apply a global 
mean pooling to the resulting node features to form a graph embedding 
that combine all the node features into one overall graph represen-
tation. We apply a linear transformation in the final layer to fine 
tune the graph embedding. Additionally, to accommodate the temporal 
dynamics, we update the static graph features by concatenating them 
with the time-series data. This integration of time series data with 
the graph representation enable the model to generate the dynamic 
graph embeddings at each time step that captures both structural 
and temporal variations in our graph data. In our experiments, the 
Graph Transformer architecture consists of 4 Transformer convolu-
tional layers, each with 4 attention heads. These layers are followed 
by a single-layer feedforward neural network without an activation 
function, which serves as a linear transformation to refine the final 
graph embedding.

2.8. End to end training with structural and temporal data

In our proposed method, we combine both the temporal data and 
dynamic graph embedding generated by the graph transformer and 
then use this as the input to the Time Series Transformer to predict the 
final output. For each time step, we append the graph embedding which 
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Fig. 6. An overview of the Time Series Transformer for predicting stress of the composition of epoxy resins and hardener. The graph embedding combined with the temporal data 
are the input to the Time Series Transformer.
has both structural and temporal context, to the corresponding time 
series features. This combination is then passed into the Time Series 
Transformer, which predicts the output at the final time step of each 
input window. The overall model is trained in an end-to-end manner, 
where both the Graph Transformer and the time series Transformer 
adjust their parameters together during training. An overview of the 
Time Series Transformer is presented in Fig.  6.

2.8.1. Time series transformer
The Time Series Transformer [30,36] processes the dynamic graph 

embeddings along with the time-series data using an encoder–decoder 
architecture with multi-head attention, demonstrated in Fig.  6. It can 
capture both short-term and long-range temporal dependencies in the 
input.

Each time-series window, along with its corresponding graph em-
bedding, is projected into a higher-dimensional space. Then the posi-
tional encodings are added to maintain temporal order. The encoder 
consists of multiple layers of multi-head self-attention and position-wise 
feed-forward networks transform the input window into a rich contex-
tual representation. The decoder uses additional attention mechanisms 
to focus on relevant parts of the encoded input while integrating dy-
namic graph embeddings for accurate prediction. Residual connections 
and normalization are applied throughout to ensure stable training. In 
the final step, a fully connected output layer generates the predicted 
stress value at the last time step of each input window. In our experi-
ments, the Time Series Transformer architecture utilized a window size 
of 4 for the time-series data. Specifically, the architecture consists of 
4 encoder layers and 4 decoder layers, each with 4 attention heads 
and a model dimension of 256. The model was trained for 30 epochs 
with a batch size of 8, using the Adam optimizer with a learning 
rate of 0.0001, weight decay of 0.0001, and a dropout rate of 0.1 for 
regularization.

2.9. Deep learning models for temporal data

We evaluated several DL models that utilize temporal data alone to 
predict the recovery stress of diamine-hardened epoxy-based thermoset 
SMPs. The models include feed-forward neural networks (FNN) [28,
37], convolutional neural networks (CNN) [38–41], Long Short-Term 
Memory networks (LSTM) [42,43], convolutional LSTM (ConvLSTM)
[44], and convolutional bidirectional LSTM (ConvBiLSTM) [45].
7 
The FNN architecture employs a multi-headed structure that inde-
pendently processes each temporal feature through embedding layers 
followed by fully connected layers, dropout regularization, and final 
concatenation. This approach effectively captures non-linear relation-
ships among features without explicitly modeling sequential depen-
dencies. CNN architectures leverage convolutional layers followed by 
pooling operations and dense layers to extract local temporal patterns 
and structural features inherent in the data. These networks are par-
ticularly adept at identifying short-range dependencies and intricate 
temporal patterns in the SMP dataset. The LSTM model, known for 
its capability to capture long-range temporal dependencies, employs 
stacked recurrent layers with gating mechanisms (input, forget, and 
output gates) that effectively manage information flow. This design 
mitigates the vanishing gradient problem commonly encountered with 
traditional recurrent neural networks.

Hybrid convolutional-recurrent models such as ConvLSTM and Con-
vBiLSTM integrate convolutional operations directly into LSTM ar-
chitectures. ConvLSTM utilizes spatial convolutional structures within 
recurrent layers to simultaneously learn spatially local features and 
sequential temporal dependencies. ConvBiLSTM extends this approach 
by processing sequences in both forward and backward directions, 
thus capturing contextual information from past and future time steps, 
enhancing overall prediction performance.

All models were trained using the Adam optimizer, incorporating 
appropriate regularization techniques and hyperparameter tuning to 
ensure robust and optimal predictive accuracy.

3. Experiments and results

3.1. Evaluation metrics

We used two performance evaluation matrices to evaluate the per-
formance of the models: Root Mean Squared Error (RMSE) and Pearson 
Correlation Coefficient (PCC) [46]. RMSE measures the error between 
the predicted and actual values by taking the square root of the mean of 
squared errors. PCC, on the other hand, evaluates the linear association 
between predictions and ground truth values, where a value closer to 1 
signifies a stronger positive correlation. The RMSE is defined as follows: 

RMSE =

√

√

√

√
1

𝑁
∑

(𝑦𝑖 − �̂�𝑖)2, (2)

𝑁 𝑖=1
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Table 4
Performance metrics (RMSE and PCC) of FNN, CNN, LSTM, ConvLSTM, ConvBiLSTM, and proposed model on datasets varying the epoxy only in epoxy-hardened compositions.
 Dataset FNN CNN [41] LSTM ConvLSTM ConvBiLSTM [45] Proposed model
 RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑  
 autoDGEBA326-IPD 33.6682 0.9216 28.7264 0.8383 28.6062 0.8700 27.3926 0.8536 23.8467 0.8828 1.3920 0.9996 
 autoEpoxy2_590-IPD 21.5371 0.9435 22.80 0.8544 25.3078 0.8303 21.4029 0.8872 22.2296 0.8755 0.6576 0.9999 
 autoEpoxy2_545-IPD 28.9431 0.8991 25.7778 0.8076 24.4269 0.8272 25.5264 0.8098 23.2852 0.8312 0.3514 1.0000 
 autoEpoxy2256-IPD 36.1205 0.9431 35.9513 0.8754 38.8733 0.8298 36.2168 0.9124 35.1469 0.8555 5.5519 0.9967 
 autoEpoxy2348-IPD 54.3062 0.9329 48.4626 0.8187 51.8248 0.7993 46.9010 0.8613 44.1809 0.8495 7.4385 0.9959 
 autoEpoxy2394-IPD 49.0315 0.9131 42.4680 0.8162 45.0538 0.8142 41.6072 0.8242 39.0672 0.8330 4.9127 0.9984 
 autoEpoxy3084-IPD 42.7393 0.9353 41.4884 0.8259 43.4070 0.8089 40.8969 0.8668 38.5956 0.8479 4.5118 0.9978 
 DGEBF-IPD 16.0836 0.9079 25.8590 0.8825 23.5002 0.8501 32.5061 0.8191 32.9510 0.8363 0.1895 1.0000 
Table 5
Performance metrics (RMSE and PCC) of FNN, CNN, LSTM, ConvLSTM, ConvBiLSTM, and proposed model on datasets varying the epoxy and hardener both in epoxy-hardened 
compositions.
 Dataset FNN CNN [41] LSTM ConvLSTM ConvBiLSTM [45] Proposed model
 RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑ RMSE ↓ PCC ↑  
 autoEpoxy2_590-APA 41.9193 0.9437 38.4127 0.8471 44.6906 0.8073 39.4081 0.8625 36.1374 0.8539 5.9505 0.9971 
 autoEpoxy2_409-APA 60.2272 0.9238 57.8208 0.8790 56.0781 0.8773 56.3111 0.9009 53.4950 0.8841 9.6100 0.9927 
 autoEpoxy2_592-APA 32.7297 0.9401 32.3868 0.8189 35.6418 0.8019 30.4658 0.8449 28.2723 0.8619 2.2924 0.9993 
 DGEBA-Autohardener70 31.0650 0.9534 28.3956 0.8626 33.7135 0.8328 26.7087 0.8883 28.6038 0.8558 3.9013 0.9983 
 DGEBA-Autohardener40 22.5000 0.9044 24.8558 0.8371 25.9302 0.8255 24.1105 0.8425 28.2789 0.8203 0.4988 0.9999 
 DGEBA-dDAP_Base134 25.9266 0.9354 27.1780 0.8314 29.6270 0.8091 26.0556 0.8543 23.6386 0.8760 1.6061 0.9996 
 DGEBA-dMPDA_Base117 64.7011 0.8653 61.2631 0.6702 60.92 0.7019 53.8625 0.7303 49.1432 0.8014 7.6781 0.9959 
 DGEBA-dMPDA_Base227 37.5867 0.9204 39.0495 0.7516 40.4150 0.7624 37.8014 0.7949 30.4593 0.8565 3.3884 0.9985 
where 𝑦𝑖 is the actual value, �̂�𝑖 is the predicted value, and 𝑁 is the total 
number of data points.

The PCC is computed as follows: 

PCC =
∑𝑁

𝑖=1(𝑦𝑖 − �̄�)(�̂�𝑖 − ̄̂𝑦)
√

∑𝑁
𝑖=1(𝑦𝑖 − �̄�)2

∑𝑁
𝑖=1(�̂�𝑖 − ̄̂𝑦)2

, (3)

where 𝑦𝑖 and �̂�𝑖 are the actual and predicted values, respectively, and 
�̄� and ̄̂𝑦 are their mean values.

3.2. Results and discussion

After preprocessing the dataset, we evaluated multiple DL mod-
els, including FNN, CNN, LSTM, ConvLSTM, ConvBiLSTM, and our 
proposed GNN based DL model for predicting the recovery stress in 
diamine-hardened epoxy-based thermoset SMPs. Initially, all models 
were trained exclusively on the autoDGEBA271-IPD dataset, parti-
tioned into an 70:20:10 ratio (70% training, 20% validating and 10% 
testing). Subsequently, we assessed the trained models’ predictive per-
formance on multiple completely unseen epoxy–hardener formulations 
to evaluate their generalization capability.

To ensure consistency, all unseen test datasets were normalized 
using the mean and standard deviation derived exclusively from the
autoDGEBA271-IPD training dataset. The predictive performance 
metrics (RMSE and PCC) for each model across all datasets are sum-
marized in two different tables separately: Table  4 presents results 
for datasets varying only the epoxy component (with IPD hardener 
constant), while Table  5 shows results for datasets where both epoxy 
and hardener components differ from the training set.

The results in Tables  4 and 5 clearly demonstrate that our proposed 
model significantly outperformed all baseline temporal-only models: 
FNN, CNN, LSTM, ConvLSTM, and ConvBiLSTM across every dataset 
tested. For example, in the autoDGEBA326-IPD dataset (epoxy vari-
ant) in Table  4, our model achieved an RMSE of 1.3920 and a PCC of 
0.9996, which significantly outperforms the second best temporal-only 
model (ConvBiLSTM) and attained an RMSE of 23.8467 and a PCC of 
0.8828. Similarly, in a more challenging scenario where both epoxy and 
hardener components differ (autoEpoxy2_590-APA) in Table  5, our 
model maintained outstanding predictive accuracy (RMSE = 5.9505, 
PCC = 0.9971), and significantly outperforms all other models.
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Among purely temporal models, the ConvBiLSTM consistently de-
livered superior predictive performance relative to simpler models 
like FNN, CNN, and LSTM, which reflects the advantages of simul-
taneously capturing local spatial patterns and bidirectional temporal 
dependencies in the data. Specifically, ConvBiLSTM exhibited lower 
RMSE and higher PCC values compared to other temporal-only models 
in almost all tested datasets. For example, on the autoEpoxy2_545-
IPD dataset in Table  4, ConvBiLSTM yielded an RMSE of 23.2852, 
compared to the significantly higher RMSE of 28.9431 for FNN and 
25.5264 for ConvLSTM. This observation underscores the effectiveness 
of hybrid convolutional-recurrent architectures in extracting intricate 
temporal patterns from sequential polymer data.

Notably, simple sequential models such as LSTM showed incon-
sistency in data sets and displayed relatively higher prediction errors 
and weaker correlations compared to convolutional architectures (CNN, 
ConvLSTM, ConvBiLSTM). This inconsistency highlights the limita-
tions of sequential-only methods when attempting to accurately model 
complex thermomechanical responses based solely on temporal infor-
mation. Additionally, the FNN, despite its computational simplicity, 
generally showed moderate performance across datasets. However, 
its predictions lacked stability and precision compared to the more 
advanced architectures.

The significant improvement demonstrated by our proposed model 
can be attributed directly to its unique capability of integrating molec-
ular structural features alongside temporal data. Specifically, by utiliz-
ing dynamic molecular graph embeddings generated through a Graph 
Transformer and subsequently integrating these embeddings with tem-
poral context using a Time Series Transformer, the model effectively 
captures structural variations between different epoxy and hardener 
formulations. This capability allowed it to accurately generalize across 
unseen formulations, substantially enhancing its predictive robustness 
compared to temporal-only methods.

To visually demonstrate this superior predictive performance,
Fig.  7(f) closely align with the ground truth, and consistently maintains 
lower errors across the entire temporal range. In contrast, the FNN 
(Fig.  7(a)), CNN (Fig.  7(b)), LSTM (Fig.  7(c)), ConvLSTM (Fig.  7(d)), 
and ConvBiLSTM (Fig.  7(e)) all exhibit significantly higher prediction 
errors, which shows their limitations in capturing the complex interplay 
between structural variations and temporal dynamics inherent in SMPs.
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Fig. 7. Performance of DL models and our proposed model in predicting the moving averaged stress on dataset DGEBF-IPD: (a) FNN, (b) CNN, (c) LSTM, (d) ConvLSTM, (e) 
ConvBiLSTM and (f) Our proposed model.
Our proposed model employs a Graph Transformer to encode struc-
tural features of epoxy–hardener molecules, and captures the com-
prehensive atomic and bonding information. By integrating these dy-
namically updated molecular graph embeddings with temporal data 
using a Time Series Transformer, the model effectively accounts for 
structural variations and temporal dependencies simultaneously. This 
combined modeling strategy significantly enhances predictive accu-
racy and enables a more robust and precise characterization of stress 
recovery behavior compared to methods relying solely on temporal 
features. Consequently, the approach demonstrates superior general-
ization capability and improved prediction robustness across unseen 
epoxy–hardener compositions.

4. Conclusion and future work

In this study, we proposed and evaluated a novel deep learn-
ing (DL) framework that integrates Graph Neural Networks (GNNs) 
with Time Series Transformers to predict the moving-averaged recov-
ery stress—a key thermomechanical property—of diamine-hardened 
epoxy-based thermoset shape memory polymers (SMPs). By combining 
molecular graph representations derived from SMILES strings with 
9 
temporal data such as time, temperature, and length, our model cap-
tures both chemical structure and dynamic material behavior. This 
joint structural–temporal representation enabled our model to outper-
form conventional temporal-only baselines (e.g., FNN, CNN, LSTM, 
ConvLSTM, ConvBiLSTM) in terms of RMSE and PCC.

Our findings demonstrate the critical role of integrating molecu-
lar structure with temporal experimental data for accurate moving-
averaged recovery stress prediction. Models that relied solely on time-
series inputs showed reduced predictive power and poor generaliza-
tion across varying epoxy–hardener systems. In contrast, our proposed 
framework, which dynamically combines graph-based molecular em-
beddings with sequential experimental features, achieved superior per-
formance in both RMSE and PCC. This fusion of structural and temporal 
domains not only improved accuracy but also significantly reduces 
the need for costly and repetitive experimental testing, offering a 
more efficient route for screening and designing high-performance SMP 
formulations.

In our future work, we plan to improve the predictive capabil-
ity and practical applicability of our framework along several direc-
tions. First, we will address the timescale gap between MD simula-
tions (femtoseconds to microseconds) and real-world stress recovery 
(seconds to minutes) by employing multiscale modeling approaches. 
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These include coupling MD-based outputs with coarse-grained vis-
coelastic models and calibrating predictions using experimental TMA 
data through transfer learning and ranking-based validation. Second, 
to better represent chemical reactivity, we will incorporate quantum-
chemical descriptors—such as HOMO-LUMO gaps, partial charges, ac-
tivation energies, and reaction barriers—computed using methods like 
density functional theory (DFT). These features will be embedded into 
our graph representation to more accurately capture curing dynam-
ics and crosslink formation [47,48]. Third, we aim to extend our 
framework to handle multi-component systems, which are common in 
industrial thermoset formulations, by constructing composite molecular 
graphs and adapting attention mechanisms to capture complex inter-
molecular interactions. Finally, a key long-term goal is to integrate and 
validate the model with available experimental datasets, enhancing ro-
bustness and enabling real-world deployment for data-driven polymer 
discovery and optimization.
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