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Abstract: In recent years, global weather changes have underscored the importance of
wildfire detection, particularly through Uncrewed Aircraft System (UAS)-based smoke
detection using Deep Learning (DL) approaches. Among these, object detection algorithms
like You Only Look Once version 7 (YOLOv7) have gained significant popularity due to
their efficiency in identifying objects within images. However, these algorithms face limita-
tions when applied to video feeds, as they treat each frame as an independent image, failing
to track objects across consecutive frames. To address this issue, we propose a parametric
Markov Chain Monte Carlo (MCMC) trend estimation algorithm that incorporates an Auto-
Regressive (AR(p)) error assumption. We demonstrate that this MCMC algorithm achieves
stationarity for the AR(p) model under specific constraints. Additionally, as a parametric
method, the proposed algorithm can be applied to any time-related data, enabling the
detection of underlying causes of trend changes for further analysis. Finally, we show that
the proposed method can “stabilize” YOLOv7 detections, serving as an additional step to
enhance the original algorithm’s performance.

Keywords: objective detection; auto-regression; time series analysis; trend estimation;
Markov Chain Monte Carlo; Hidden Markov Model

MSC: 60K15; 82-11; 82-10; 82C4

1. Introduction
The increasing frequency and intensity of wildfires, exacerbated by climate change,

highlight the urgent need for effective detection and management strategies to protect
ecosystems, human lives, and economic assets [1]. As wildfires become more unpredictable
and widespread, early detection is crucial for minimizing damage and improving response
times. However, traditional fire detection methods, such as satellite imaging and ground-
based sensors, often suffer from delayed detection, limited coverage, and high operational
costs [2].

Recent advancements in image processing, particularly in object detection [3] and
image segmentation [4], have significantly improved fire detection accuracy and efficiency.
In this context, Uncrewed Aircraft Systems (UASs) have emerged as a promising tool for
real-time smoke detection, providing critical support for wildfire prevention and manage-
ment [5,6]. Unlike conventional methods, UASs can rapidly navigate hazardous environ-
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ments, offering a flexible and cost-effective solution for monitoring vast and inaccessible
areas. By leveraging aerial imagery and sophisticated computer vision algorithms, UAS
can detect smoke at its early stages, enabling authorities to respond proactively before
fires escalate.

Moreover, by integrating advanced vision-based techniques with artificial intelli-
gence, UASs enable automated smoke detection and tracking in dynamic environments [7].
With their vision-based capabilities, UASs offer significant potential for wildfire surveil-
lance, identification, and management [8]. This approach mitigates both the environmental
and social impacts of wildfires, highlighting the critical role of UASs in modern fire man-
agement strategies.

A key challenge in vision-based fire detection using video data is the limitation of
object detection algorithms. One widely used real-time object detection algorithm is
You Only Look Once (YOLO) [9]. Leveraging a Convolutional Neural Network (CNN)
architecture, YOLO quickly detects and classifies objects in an image by dividing it into a
grid of pixels. YOLOv7 [10] improves upon the original YOLO algorithm by enhancing
accuracy and speed through the introduction of Extended Efficient Layer Aggregation
Networks (E-ELAN).

While YOLOv7 performs well on static images, its effectiveness declines in video
applications. This is because the algorithm processes each video frame independently,
disregarding temporal relationships between frames. For instance, due to the temporal
dependency of adjacent frames, YOLOv7’s bounding boxes may flicker, leading to inconsis-
tent detections. This can cause errors such as misclassifying clouds as smoke or missing
smoke detections in some frames, even when correctly identified in previous ones. To ad-
dress these limitations, we propose a time-series analysis approach to enhance YOLOv7’s
performance by incorporating temporal information, thereby improving the robustness
and reliability of UAS-based wildfire detection.

In simple terms, a time series refers to a sequence of variable values recorded at
different points in time, such as daily temperature measurements at a weather station [11].
Time series data often exhibits long-term trends, and identifying and extracting these
underlying trends can be crucial for better understanding and analysis. Trend extraction
is widely used across various fields. For example, the power sector relies on it to forecast
daily electricity production [12], while the Department of Transportation uses it to predict
state traffic patterns, helping individuals plan their travel more effectively [13].

Trend extraction methods are generally classified into parametric and non-parametric
approaches. Classical parametric trend estimation methods, such as Ordinary Least Squares
(OLS), include median-of-pairwise slopes regression [14] and segmented regression [15].
The advantage of parametric methods lies in their strong interpretability; when the chosen
model accurately represents the underlying data, these methods can achieve high accu-
racy. However, real-world data often contains unpredictable factors, making it difficult
to ensure that a parametric model perfectly fits the data. In such cases, non-parametric
trend estimators, such as Hodrick-Prescott (HP) filtering [16] and l1-trend filtering [17], are
often preferred.

In this paper, the proposed method falls under the category of parametric trend
estimation, as the prescribed fire environment during UAS deployment remains highly
consistent. Compared to OLS, the proposed method incorporates additional constraints in
the dataset, making it useful not only for stabilizing the YOLOv7 algorithm by predicting
smoke instances missed by YOLOv7, but also for identifying key factors influencing smoke
trends, such as wind speed, forest type, and UAS movement. The following are the key
contributions of this paper:
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1. Development of a Parametric Trend Estimation Method for Non-Stationary Time
Series: We introduce a novel approach to accurately decompose time-series data into
its long-term and short-term components, assuming the short-term trend follows an
autoregressive (AR(p)) model. This method leverages the inherent autocorrelation in
time-series data to identify patterns and similarities between past and present data
points, as is commonly observed in such datasets [18].

2. Theoretical Justification of the Model: We provide a rigorous theoretical foundation
for the proposed parametric estimation method. Under two key assumptions, we
demonstrate that the method can be optimized using an MCMC algorithm and that
the algorithm converges over successive iterations.

3. Application to Wildfire Smoke Detection in Video: The proposed trend estimation
method is applied to real-world smoke video data under the Hidden Markov Chain
(HMM) structure. Experimental results demonstrate that the method effectively
enhances smoke detection by correcting both missed and erroneous detections.

This paper is organized as follows: Section 2 presents some popular trend estimation
methods currently in use. Section 3 describes the overall model, assumptions, theoretical
support for applying MCMC estimation, and the MCMC algorithm. Section 4 provides two
simulation studies to visualize the algorithm’s efficiency. Section 5 compares our model es-
timation with the YOLOv7 [10] using a wildfire video in the real world. Section 7 shows the
future research direction based on the model, and Section 8 summarizes our contribution.

2. Related Works
As mentioned, due to the unpredictable factors when collecting data, popular exam-

ples of trending estimation in time series fields are the HP filtering and l1-trend filtering.
Compared to HP filtering, l1-trend filtering estimates the trend using a simple linear regres-
sion. The benefit of this approach is its interpretability. However, the optimization method
for l1-trend filtering is slightly more complicated due to the use of the l1 penalty. A modern
solution to this optimization problem is to apply the Markov Chain Monte Carlo (MCMC)
process [19]. Without the optimization problem, HP filtering is popular in economics [20].
However, since this method is nonparametric, the model lacks interpretability [21].

Another issue is that both HP filtering and l1 filtering assume that the error terms are
independent of time, meaning the time series consists of a single trend function and an
error term with constant variance over time (i.e., the error is stationary). However, this
stationarity assumption may not be appropriate for analyzing wildfire detection videos,
as the motion of wildfire smoke in these videos is influenced by two key time-dependent
factors. The first factor is the long-term trend, which is primarily determined by the motion
of the UAS capturing the video. The second factor is the short-term trend, which depends
on dynamic environmental conditions such as current wind speed, wind direction, wildfire
spread, and other contextual variables. This short-term trend introduces a non-stationary
error component into the model, making the stationary error assumption inadequate.

In addition to classical HP filtering and l1 filtering, a newer trend estimation method is
Singular Spectrum Analysis (SSA) [22–25]. SSA transforms the time series into a trajectory
matrix and applies Principal Component Analysis (PCA) to decompose the matrix into
a linear combination of elementary matrices, effectively extracting the latent function.
However, similar to HP filtering and l1l1 filtering, SSA also assumes a stationary error term.

To address the issue of non-stationarity, a non-stationary Gaussian process regression
model has been proposed [26], which is a non-parametric approach capable of handling
time-varying errors. While non-parametric and semi-parametric models excel at mak-
ing accurate predictions, they face significant limitations in terms of interpretability and
facilitating further analysis. These challenges make them less suitable for applications
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that require a deeper understanding of the underlying processes, such as the dynamics of
wildfire smoke or the movement of UAS.

Therefore, we propose a parametric model and combine it with YOLOv7 based on the
Hidden Markov Model (HMM) framework, which overcomes these limitations. The pro-
posed method estimates transition probabilities within the HMM using time series data,
where the long-term trend is estimated using Ordinary Least Squares (OLS), and the short-
term trend is modeled by an AR(p) process. The emission states correspond to smoke
locations identified by the YOLOv7 object detection model (see Figure 1).

Figure 1. The Hidden Markov Model assumption by combining our proposed method and the
objective detection method (YOLOv7).

This approach allows for the prediction of smoke in frames where YOLOv7 detected it
in the previous frame but fails to identify it in the current one. It also corrects false detections
and integrates these refined, newly identified frames into the training set, enhancing
YOLOv7’s accuracy. Additionally, the trend estimation facilitates further analysis of the
factors driving changes in the trend function, providing valuable insights into the dynamics
of wildfire smoke.

3. Methodology
In this article, we assume that the location and motion of smoke in a video are governed

by two main factors: the long-term trend and the short-term trend. The long-term trend is
primarily influenced by the motion of the UAS, while the short-term trend consists of two
key components. The first component is the previous smoke location in the video, which
ensures temporal continuity and can be predicted using an autoregressive function [27].
The second component includes random factors affecting the smoke, such as wind direction,
wind speed, and other environmental variables. Additionally, we assume that these factors
are additive, leading to the formulation of the following time-series model.

Y(t) = f (t) + AR(p), (1)

where f (t), a deterministic function, represents the long-term trend, and the short-term
trend is modeled by an autoregressive function AR(p):

AR(p) = Y∗(t) = α1Y∗(t − 1) + α2Y∗(t − 2) + · · ·+ αpY∗(t − p) + ϵt. (2)

Here, Y∗(t) = Y(t)− f (t) represents the deviation of Y(t) from the trend f (t), and the
error term ϵt is assumed to be independently and identically distributed (IID) following a

distribution with finite mean 0, and variance σ2 (i.e., ϵt
iid∼ Dist(0, σ2)). In addition, by the

definition of autoregressive function, we have the following assumption.
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Assumption 1. The coefficients αi in Equation (2) satisfy

0 ≤ αi ≤ 1, i = 1, 2, . . ., p, and
p

∑
i=1

αi ≤ 1.

In this setup, we treat AR(p) as the random error, while the trending function f (t) is
conditionally independent of AR(p) given

Y∗(t) = [Y∗(t − 1), Y∗(t − 2), . . ., Y∗(t − p)]T ∈ Rp. (3)

Furthermore, by Assumption 1, and leveraging the properties of simple linear regression,
we constrain the covariance structure of Y∗(t). That is,

Cov[Y∗(t), Y∗(t + i)]
Var[Y∗(t)]

≈ αi ∈ [0, 1] ⇔ 0 ≤ Cov[Y∗(t), Y∗(t + i)] ≤ Var[Y∗(t)]. (4)

This ensures that the covariance of is bounded, reflecting the stability of the short-term
trend within the time series model.

3.1. Model Assumptions and the Stationary Property

Based on the model assumptions outlined above, we further introduce the following
assumption.

Assumption 2. The initial value of the short-term trend Y∗(t) given by

Y∗(0) ∼ Dist(0, σ2),

and for t ≥ 1, Y∗(t) follows the autoregressive process

Y∗(t) =

∑t
i=1 αiY∗(t − i) + ϵt, t = 1, 2, . . ., p,

AR(p), t > p.
. (5)

This implies that Y∗(t) is a non-stationary time series with variance changing over time.

With both Assumptions 1 and 2, and given f (t) and Y∗(t), the conditional expectation
of Y∗(t) is

E[Y(t)|Y∗(t)] = f (t) +
p

∑
i=1

αiY∗(t − i). (6)

Thus, the long-term trend f (t) can be expressed as

f (t) = E[Y(t)|Y∗(t)]−
p

∑
i=1

αiY∗(t − i), (7)

and the autoregressive component is given by

p

∑
i=1

αiY∗(t − i) = E[Y(t)|Y∗(t)]− f (t), (8)

which is the classical detrending process.
To estimate the trend, we propose the following iterative procedure. Let Yobs(t)

represent the observed time series. The iteration steps are as follows:

1. ∑
p
i=1 αiY∗(t − i) = Yobs(t)− fi(t).

2. fi+1(t) = Yobs(t)− ∑
p
i=1 αiY∗(t − i).
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In this case, the parametric function fi(t) is a stationary function that does not change
over time, while the error term ∑

p
i=1 αiY∗(t − i) is non-stationary, with variance changing

over time. Additionally, by taking the variance of both sides of Equation (8), we obtain

Var

[
p

∑
i=1

αiY∗(t − i)

]
= Var{E[Y∗(t)|Y∗(t)]} ≤ Var[Y∗(t)], (9)

where Var[Y∗(t)] = Var[AR(p)]. Under these assumptions, we can now state the follow-
ing theorem.

Theorem 1. Let Assumptions 1 and 2 hold. The variance of Y∗(t) is given by

Var[Y∗(t)] = (1 + λt)σ2, t = 1, 2, . . . (10)

where 0 ≤ λ ≤ 1.

With Theorem 1, the proposed method can be applied to non-stationary time series
scenarios where variance changes over time. The proof of Theorem 1 is provided in
Appendix A, and the empirical conclusions are discussed in the simulation study section.
The following inequality follows from Theorem 1.

Var

[
p

∑
i=1

αiY∗(t − i)

]
≤ Var[Y∗(t)] ≤ (1 + t)σ2. (11)

This inequality implies that the variance of ∑
p
i=1 αiY∗(t − i) is finite for a fixed t. Hence,

as the iteration of f (t) progresses, it becomes stationary over extended prediction times t,
filtering the non-stationary error terms whose variance changes over time. Therefore, given
the form of f (t), the observed data Yobs(t), and the prediction horizon t, we can construct
an MCMC algorithm to estimate the trending function f (t).

3.2. The MCMC Algorithm

Algorithm 1 presents the pseudo-code. In our experiment, we set f (t) as a linear
trend since the data collected from the UAS is obtained under consistent motion. However,
in theory, this method can also be applied to non-linear cases.

Algorithm 1 MCMC iteration algorithm

1: Initialize the trending function f̂0(t).
2: for i = 0, 1, . . ., I − 1 do
3: Compute Y∗(t) = Yobs(t)− fi(t).
4: Estimate ÂRi(p) given Y∗(t).
5: Compute RMSEAR, the rooted mean squared error of ÂRi(p), as the estimate of σ2.
6: for j = 1, 2, . . ., J do
7: Simulate Ŷ∗

ij(t) ∼ N(ÂRi(p), RMSE2
AR)

8: Estimate f̂i+1,j(t) = Yobs(t)− Ŷ∗
ij(t)

9: Compute the 95% quantile for the Y(t) estimation.
10: if Yobs(t) /∈ (Ŷ0.025(t), Ŷ0.975(t)) then
11: set Yobs(t) as the outlier and remove it from the training data.
12: Determine f̂i+1(t) = Yobs(t)− Ŷ∗

i (t), where Ŷ∗
i (t) = Medianj(Ŷ∗

ij(t)).

13: After I iterations, and when kth iteration becomes stationary, where k < I, compute the
final prediction and the quantile intervals.
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This algorithm performs two main tasks. First, it estimates the trending function f (t).
Second, it identifies outliers and non-stationary errors, removes them from the training
data, and corrects the trending function f (t).

In Line 2 of Algorithm 1, the total number of iterations, I, should be set large enough
to ensure the estimated function f̂ (t) has converged. In our simulation study, the estimates
became stationary after 100 iterations. Therefore, empirically, we recommend setting I
between 150 and 250 iterations. In Line 6 of Algorithm 1, we set the for-loop parameter
J = 50 since, according to our empirical (i.e., simulation) study, there is no significant
difference when J > 50. In Line 7, we assume ϵt follows a normal distribution with mean
ÂRi(p) and standard deviation RMSEAR, where RMSEAR is the root mean squared error
(RMSE) of ÂR(p) (see Line 5). In Line 12, we use the median to compute Ŷ∗

i (t), but it
can also be determined by averaging over J iterations of f̂i+1,j(t). In this paper, the final
model is

Ŷ(t) = f̂ (t) + ÂR(p) =
I

∑
i=k

f̂i(t)
I − k + 1

+
I

∑
i=k

ÂRi−1(p)
I − k + 1

, (12)

where the 95% Percentile Interval is given by the following formula:

Ŷ0.025(t) = quantilei( f̂i(t) + ŶARi−1(t), q = 0.025)

Ŷ0.975(t) = quantilei( f̂i(t) + ŶARi−1(t), q = 0.975)

4. Simulation Study
We construct two simulation studies: one is to simulate the performance of Algorithm 1,

and the other is to demonstrate Theorem 1.

4.1. Simulation of Y(t) = f (t) + AR(p)

In the simulation study, we let f (t) = 5t, a linear trend, and let

AR(3) = 0.4Y∗(t − 1) + 0.1Y∗(t − 2) + 0.5Y∗(t − 3) + ϵ, (13)

where ϵ ∼ N(0, 52). Hence, the simulated data can be expressed as

Y(t) = 5t + 0.4Y∗(t − 1) + 0.1Y∗(t − 2) + 0.5Y∗(t − 3) + ϵ. (14)

The simulation contains 150 time series with time length T = 100 (see Figure 2a).
The training data includes the first 25 time points, i.e., Y(0), Y(1), . . ., Y(25). Notice that we
simulate the camera shaking error at time 90. That means the algorithm should be able to
split the data into two classes: one is the first 90 time points, and the other one is the last
10 time points.

We apply the Algorithm 1 to the simulation data with iteration I = 250, and the
simulated data J = 50, the final model is

Ŷ(t) = 5.17t + 0.39Y∗(t − 1) + 0.14Y∗(t − 2) + 0.35Y∗(t − 3), (15)

whereas the trend is estimated by simple linear regression (the classical detrending method):

Ŷ′(t) = 7.34t + 0.85Y∗(t − 1) + 0.02Y∗(t − 2) + 0.05Y∗(t − 3). (16)
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In addition, the standard deviation we estimated is RMSEAR = σ̂ ≈ 38.16. Hence, the esti-
mated maximum variance of Y(t) (see Figure 2b) is

V̂ar[Y(t)] = (1 + t)38.162. (17)

(a) (b)

Figure 2. (a) The blue dashed line is the trending function estimated by the simple method, and the
solid black line is the trending function estimated by Algorithm 1. (b) The observed variance (solid
blue) and the maximum estimated variance (dashed orange) of Y(t).

Table 1 shows the estimate and the confidence interval (CI) using linear regression.
Because the camera shaking (error) is simulated, the linear regression overestimates the
trending effect. On the other hand, the estimate and the percentile interval (PI) using
Algorithm 1 show a better result. In addition, the RMSE shows that the simple linear
regression (114.34) is overfitting, whereas the RMSE after using Algorithm 1 is not (145.57).

Table 1. Trending function estimated by classical linear regression vs. the proposed method.

β1 RMSE

Model Coef 95% CI or PI Coef 95% CI or PI

Classical Method 7.34 (7.26, 7.42) 114.34 NA
Proposed Method 5.17 (4.99, 5.38) 145.57 (138.65, 151.60)

Table 2 shows the differences between the classical detrending method and Algorithm 1
for the AR model estimates. The PI of α1 estimated by Algorithm 1 includes the true value
(0.4), and both α2 and α3 are close to the true value. However, the classical detrending
method using linear regression is not so good.

Table 2. AR(3) estimated by the classical detrending method vs. the proposed method.

α1 α2 α3

Model Coef 95% CI or PI Coef 95% CI or PI Coef 95% CI or PI

Classical Method 0.85 (0.838, 0.870) 0.02 (−0.01, 0.04) 0.05 (0.04, 0.07)
Proposed Method 0.39 (0.38, 0.40) 0.14 (0.139, 0.141) 0.35 (0.34, 0.36)

Figure 2 left visualizes the final result of Algorithm 1 compared with the classical
detrending method using linear regression. Notice that, since the camera error, the simple
linear regression is not working correctly. Figure 2 right shows the maximum variance
estimated and the observed variance. Notice that the maximum variance estimated is the
upper bound and always larger than the observed variance.
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Figure 3 shows the model estimating iterations by the proposed method. The estimates
become stationary after 100 iterations. Hence, the final estimation takes the average of
these estimators from 150 to 250 iterations (displayed by the green dashed line).

(a) (b)

Figure 3. (a) The trending function estimation (i.e., f̂ (t) = β̂t) estimated by the proposed method.
(b) The AR(3) function estimation by Algorithm 1. The overall estimation becomes stationary after
100 iterations.

4.2. Simulation of Var[AR(p)]

In this simulation, we set

Y∗(t) = α1Y∗(t − 1) + α2Y∗(t − 2) + ϵ, (18)

where ϵ
iid∼ N(0, 52), and Y(0), Y(1) iid∼ N(0, 52). In addition, we set α1 from 0 to 1 by

0.01, and α2 = 1 − α1. Moreover, we create 1500 replicates of Y∗(0), Y∗(1), . . ., Y∗(100),
and compute the variance of each time t (i.e., Var[Y∗(t)], where t = 0, 1, . . ., 100).

After computing Var[Y∗(t)], we apply simple linear regression to estimate the λ,
that is,

Var[Y∗(t)] = λ′t + σ2. (19)

Then let λ = λ′/σ2, which leads to the final model

Var[Y∗(t)] = (1 + λt)σ2. (20)

Table 3 shows the minimum and the maximum estimates of λ, and when α1 = 1 is the
random walk without drifting (Gaussian process).

Table 3. Some important α = (α1, α2)
T simulation results.

λ

Important α’s Coef 95% CI

(0, 1) 0.513 (0.510, 0.517)
(0.07, 0.93) 0.275 (0.273, 0.278)
(0.99, 1) 0.965 (0.961, 0.970)
(1, 0) 0.932 (0.928, 0.936)
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Notice that the λ estimates’ minimum and maximum are all in the range of [0, 1]
(see Figure 4b). In addition, Figure 4a visualizes the simulated variance and the linear
regression of the variance when α1 = 0.3, α2 = 0.7.

(a) (b)

Figure 4. (a) Var[Y∗(t)] vs. t when α = (0.3, 0.7)T . (b) The estimates of λ under different
α = (α1, 1 − α1)

T . The red dashed line indicates λ < 1.

5. Real-World Data Analysis
5.1. Data Collection

In May 2022, we collaborated with the Tall Timbers Research Station to conduct
a controlled burn on their property in Tallahassee, Florida. The burn area, shown in
Figure 5a, covers approximately 9 acres of forested land. These controlled burns are
routinely performed during the spring to manage weeds and improve soil fertility.

(a) (b)

Figure 5. (a) The area designated for the controlled burn (outlined in blue). (b) The flight path of the
UAS, which is under the control of a human operator. The marked spot on the diagram indicates the
starting position.

Smoke movement is influenced by various factors, including temperature, external
wind, and humidity. While it is mathematically impossible to precisely model all external
conditions, our algorithm leverages past smoke movement to summarize these factors
as an error term. In other words, our algorithm minimizes the impact of environmental
conditions by estimating the trend of the smoke movement and using this trend to predict
future movement.

During the burn, we utilized a multirotor UAS to collect data from the event.
The UAS’s flight plan initiated from the downwind side, progressing upwind towards
the area of active burning. It was operated remotely by a human controller, with sensor
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data being relayed to a ground station for immediate fire monitoring. Figure 5b shows the
flight trajectories captured by the UAS’s onboard GPS, indicating that the drone repeatedly
passed over the burn areas to gather environmental information. This operation occurred
in the early stages of the controlled burn, just after it was ignited, and lasted for about
15 min before the UAS returned to the ground.

5.2. Data Process and Objective Detection

We utilized YOLOv7, a pre-trained real-time object detection model, to analyze wildfire
smoke detection data captured at 30 frames per second by a UAS. YOLOv7, which is based
on convolutional neural networks, is renowned for its accuracy in detecting objects in both
images and videos. It outputs detailed information, including pixel coordinates of the
bounding box center (horizontal x and vertical y), the width and height of the bounding
box, confidence scores, and bounding box annotations.

In this dataset, we assume that all accurately detected smoke instances follow the same
trend at any given timeframe. Therefore, we average the x-coordinates and y-coordinates of
the center points of the bounding boxes provided by YOLOv7 within each frame, resulting
in a unique x and y coordinate for each frame. This processed data is then treated as a time
series, with the frame ID representing time, to train the proposed model using Algorithm 1.
Finally, the trained model is applied to predict future frames, starting with a confirmed
bounding box from YOLOv7 as the initial reference point.

Figure 6 shows the PACF of both the x-coordinate and the y-coordinate. According to
Figure 6, we use AR(3) to estimate the random effect. Hence, the model in this data is

Y(t) = f (t) + AR(3), (21)

where f (t) is a linear function determined by different timelines (frame id).

(a) (b)

Figure 6. (a) The PACF of the y-coordinate. (b) The PACF of the x-coordinate.

Figure 7 displays a segment of the data (Frames 687–825). In this section, the video cap-
tures a single smoke area. However, within a 1 s window (Frames 756–787), the bounding
box generated by YOLOv7 fluctuates multiple times due to detection errors, as indicated by
the dots in Figure 7. Figure 7a highlights the significant difference between the trend pre-
diction obtained using the classical detrending method (green solid line) and the prediction
generated by Algorithm 1 (black dashed line).

The real images on the left in Figure 8 show the YOLOv7 predictions. In Frame 757,
as illustrated in Figure 8, YOLOv7 fails to detect the smoke. However, Algorithm 1
successfully identifies the trend and makes an accurate prediction. Therefore, visually,
the proposed method appears more “stable” than the original YOLOv7.
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(a) (b)

Figure 7. (a) The x-coordinate prediction. (b) The y-coordinate prediction.

Figure 8. The figures on the left are the YOLOv7 bounding box detection on Frames 756, 757, and 758.
The figures on the right are the Algorithm 1 bounding box prediction on Frames 756, 757, and 758.

6. Results
Based on the flight path of the UAS (see Figure 5b), we divide the video frames into

three sections. The first section, from Frames 29–500, corresponds to the UAS moving from
the forest to the lake, during which YOLOv7 captures most of the smoke and generates
the most consistent data. The second section, from Frames 687–825, focuses on the lake,
resulting in fewer instances of smoke and less data generated by YOLOv7. In the third
section, the UAS returns from the lake to the forest. This section includes both the sky and
smoke, causing YOLOv7 to occasionally misidentify clouds as smoke.

Table 4 presents the numerical results of the trend estimation. For the x-coordinate,
there are significant differences between the classical detrending method and Algorithm 1,
with our proposed method slightly outperforming the classical approach.
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Table 4. The trending function of Frame 687–825, estimated by classical linear regression vs. the
proposed method.

β1

Model Coef 95% CI RMSE

Classical Method (x-coordinate) 0 (−0.0003, 0.0003) 0.0324
Proposed Method (x-coordinate) 0.0005 (0.0005, 0.0006) 0.0321
Classical Method (y-coordinate) 0.0011 (0.0005, 0.0017) 0.0661
Proposed Method (y-coordinate) 0.0015 (0.0014, 0.0016) 0.0709

For the y-coordinate, no statistical differences were observed, as the 95% CIs of both
the classical method and the proposed method overlap. The outcome is also illustrated
in Figure 7b, where the classical method is represented by the green solid line (initial
y-trend), and the proposed method is represented by the black dashed line (predicted
trend). Additionally, since the classical method treats the points from Frame 687 to 710 as
outliers, it adheres more closely to the observed data and, consequently, predicts a different
intercept (β̂0), resulting in a slightly smaller root mean squared error (RMSE).

However, since both methods use only the time-related coefficient (β̂1) to predict the
trend, and the proposed method is ultimately combined with the AR(3) model, discarding
the predicted intercepts, the difference between the intercept estimates from both methods
is not significant.

Table 5 implies that the AR(3) estimated by both methods has no significant difference
except α1 in the y-coordinate.

Table 5. The AR(3) of Frames 690–825, estimated by the classical detrending method vs. the
proposed method.

α1 α2 α3

Model Coef 95% CI Coef 95% CI Coef 95% CI

Classical Method (x-coordinate) 0.0464 (−0.1431, 0.2361) 0.0609 (−0.1281, 0.2501) 0.4613 (0.2721, 0.6511)
Proposed Method (x-coordinate) −0.0129 (−0.1991, 0.1741) 0.0332 (−0.1531, 0.2201) 0.5648 (0.3781, 0.7511)
Classical Method (y-coordinate) 0.2993 (0.0811, 0.5181) 0.0815 (−0.1671, 0.3301) 0.3700 (0.1201, 0.6201)
Proposed Method (y-coordinate) 0.0906 (−0.0991, 0.2801) 0.0428 (−0.1461, 0.2321) 0.5252 (0.3421, 0.7091)

Finally, we apply Algorithm 1 and identify three distinct trending patterns in three
frame sections (29–500, 687–825, 3150–3600). The summary result is shown in Table 6.
The inconsistent RMSE is due to changes in the motion of the observed data. The RMSE
between Frames 687 and 825 is the smallest because, during this section, the UAS captured a
constant wildfire while maintaining a constant speed. However, between Frames 3150 and
3600, the UAS captured both the wildfire and mistakenly identified some clouds as wildfire,
causing the observations to become unstable and resulting in a higher RMSE.

Table 6. The trending function estimates using Algorithm 1.

β1

Frames Section Coef 95% CI RMSE

29–500 (x-coordinate) 1.25 × 10−4 (1.20 × 10−4, 1.30 × 10−4) 0.0808
687–825 (x-coordinate) 5.29 × 10−4 (5.00 × 10−4, 6.00 × 10−4) 0.0321
3150–3600 (x-coordinate) −2.53 × 10−4 (−2.68 × 10−4, −2.38 × 10−4) 0.0746
29–500 (y-coordinate) 1.96 × 10−4 (1.91 × 10−4, 2.00 × 10−4) 0.0985
687–825 (y-coordinate) 1.46 × 10−3 (1.37 × 10−3, 1.56 × 10−3) 0.0709
3150–3600 (y-coordinate) 2.05 × 10−3 (2.00 × 10−3, 2.10 × 10−3) 0.1213
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7. Discussion and Future Works
There are two directions to further refine the algorithm in this paper. One is related

to segmented regression in the time series. The main problem of segmented regression is
determining the number of segments of time (non-identified case) [28]. With Algorithm 1,
we can determine if we should make a new segment at time t + h or not by the maximum
confidence interval (i.e., Y(t + h)± 1.96

√
(1 + h)σ).

Another direction is to expand the applicability of the algorithm. As mentioned,
the current constraint requires the parameters of the autoregressive function to be between
0 and 1, with their sum less than 1. Extending this constraint to the L1 norm, however,
may not guarantee a stationary result. Moreover, since the data collected from the UAS is
obtained under consistent motion, the algorithm is applied with a linear trend. While the
trend function could, in theory, take any form, further studies are needed to explore this
possibility. Additionally, in this paper, we employ the HMM-based framework solely to
integrate the proposed trend estimation method with YOLOv7, without altering the HMM
method itself. Therefore, the proposed approach can be further enhanced by incorporating
Bayesian updates to fully leverage the capabilities of the HMM.

8. Conclusions
This paper introduces an MCMC-based trending estimation algorithm that effectively

separates long-term and short-term trends for further analysis. In a real-world scenario, we
apply this algorithm to wildfire smoke detection data, specifically a 30-frame-per-second
video captured by a UAS. Compared to classical detrending methods, our algorithm
provides more robust results with this data. Furthermore, the algorithm is used to predict
missing data points and correct erroneous detections, ensuring that the bounding box in
the video reliably tracks the smoke once detection is confirmed. Additionally, the paper
demonstrates that, under certain constraints, the autoregressive function exhibits finite
variance that is linearly related to time. As a result, the algorithm becomes stationary when
the prediction period is limited.
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Appendix A
Appendix A.1. Proof of Theorem 1, Where t = 0, 1, . . ., p

In this section, we will prove that, if

Y∗(t) =
t

∑
i=1

αiY∗(t − i) + ϵt, t = 1, 2, . . ., p (A1)

and αi following all the assumptions, then Var[Y∗(t)] = (1 + λt)σ2, where 0 ≤ λ ≤ 1.
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Proof. Var[Y∗(0)] = σ2 = (1 + 0λ0)σ
2. When t = 1, 2, . . ., p,

Var[Y∗(t)] =
t

∑
i=1

α2
i Var[Y∗(t − i)] + σ2 (A2)

+
t−1

∑
i=1

αi

(
t

∑
j=i+1

αjCov[Y∗(t − i), Y∗(t − j)]

)
(A3)

≤
t

∑
i=1

α2
i Var[Y∗(t − i)] + σ2 +

t−1

∑
i=1

αi

(
t

∑
j=i+1

αjVar[Y∗(t − j)]

)
(A4)

=
t

∑
i=1

[
αi

(
i

∑
j=1

αj

)
Var[Y∗(t − i)]

]
+ σ2. (A5)

Let t = 1, Var[Y∗(1)] = (1 + α2
1)σ

2 = (1 + λ1)σ
2, where λ1 = α2

1 ∈ [0, 1].
Similalry, let t = 2,

Var[Y∗(2)] ≤
2

∑
i=1

[
αi

(
i

∑
j=1

αj

)
Var[Y∗(2 − i)]

]
+ σ2 (A6)

=
2

∑
i=1

[
αi

(
i

∑
j=1

αj

)
[1 + λ1(2 − i)]

]
σ2 + σ2. (A7)

Let λ∗ =
(

∑i
j=1 αj

)
, then 0 ≤ λ∗ ≤ 1. Consequently,

Var[Y∗(2)] ≤ λ∗
2

∑
i=1

αi[1 + λ1(2 − i)]σ2 + σ2 (A8)

≤ λ∗
(

2

∑
i=1

αi

)
[1 + λ1]σ

2 + σ2 (A9)

= (1 + 2λ2)σ
2, (A10)

where λ2 =
λ∗(∑2

i=1 αi)[1+λ1]
2 ∈ [0, 1], as 1 + λ1 ≤ 2, and 0 ≤ λ∗

(
∑2

i=1 αi

)
≤ 1.

Let t < p and
Var[Y∗(t)] = (1 + tλt)σ

2,

where λt = maxi:i<t λi ∈ [0, 1]. Then

Var[Y∗(t + 1)] ≤
t+1

∑
i=1

[
αi

(
i

∑
j=1

αj

)
[1 + λt(t + 1 − i)]

]
σ2 + σ2. (A11)

Again, let λ∗ =
(

∑i
j=1 αj

)
∈ [0, 1], then

Var[Y∗(t + 1)] ≤
t+1

∑
i=1

αiλ
∗[1 + λt(t + 1 − i)]σ2 + σ2 (A12)

≤
(

t+1

∑
i=1

αi

)
λ∗[1 + tλt]σ

2 + σ2 (A13)

= [1 + (t + 1)λt+1]σ
2, (A14)

where

λt+1 =

(
∑t+1

i=1 αi

)
λ∗[1 + tλt]

t + 1
.
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Since 1 + tλt ≤ 1 + t and 0 ≤
(

∑t+1
i=1 αi

)
≤ 1, 0 ≤ λt+1 ≤ 1.

Appendix A.2. Proof of Theorem 1, Where t = p + 1, p + 2, . . .

In this section, we will prove that, if

p

∑
i=1

αiY∗(t − i) + ϵt, t = p + 1, p + 2, . . . (A15)

and αi following all the assumptions, then Var[Y∗(t)] = (1 + λt)σ2, where 0 ≤ λ ≤ 1.

Proof. Similar to the previous section, given the preliminary and that t > p, we have

Var[Y∗(t)] ≤
p

∑
i=1

αi

[(
i

∑
j=1

αj

)
Var[Y∗(t − i)]

]
+ σ2. (A16)

Let t = p + 1, and

Var[Y∗(p + 1)] ≤
p

∑
i=1

αi

[(
i

∑
j=1

αj

)
Var[Y∗(p + 1 − i)]

]
+ σ2, (A17)

where Var[Y∗(0)] ≤ Var[Y∗(1)] ≤ · · · ≤ Var[Y∗(p)] = (1+ λp)σ2, λ ∈ [0, 1]. Consequently,

Var[Y∗(p + 1)] ≤
[

p

∑
i=1

αi

(
i

∑
j=1

αj

)]
(1 + λp)σ2 + σ2 (A18)

= [1 + (1 + p)λp+1]σ
2, (A19)

where

λp+1 = max
i:i≤p


[
∑

p
i=1 αi

(
∑i

j=1 αj

)]
(1 + λp)

1 + p
, λi

. (A20)

Since (1 + λp) ≤ 1 + p, and
[
∑

p
i=1 αi

(
∑i

j=1 αj

)]
∈ [0, 1], λp+1 ∈ [0, 1].

Let t = p + 2, and

Var[Y∗(p + 2)] ≤
p

∑
i=1

αi

[(
i

∑
j=1

αj

)
Var[Y∗(p + 2 − i)]

]
+ σ2. (A21)

Similarly,

Var[Y∗(p + 1)] ≤
p

∑
i=1

αi

[(
i

∑
j=1

αj

)
Var[Y∗(p + 1 − i)]

]
+ σ2 (A22)

=
p

∑
i=1

αi

[(
i

∑
j=1

αj

)]
Var[Y∗(p + 1)] + σ2 (A23)

=
p

∑
i=1

αi

[(
i

∑
j=1

αj

)]
[1 + (p + 1)λp+1]σ

2 + σ2 (A24)

= [1 + (2 + p)λp+2]σ
2, (A25)

where

λp+2 = max
i:i≤p+1

∑
p
i=1 αi

[(
∑i

j=1 αj

)]
[1 + (p + 1)λp+1]

2 + p
, λi

 ∈ [0, 1]. (A26)
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Let t > p be any integer and Var[Y∗(t)] = [1 + tλt]σ2, where λt ∈ [0, 1]. Then

Var[Y∗(t + 1)] ≤
p

∑
i=1

αi

[(
i

∑
j=1

αj

)]
Var[Y∗(t)] + σ2 (A27)

=
p

∑
i=1

αi

[(
i

∑
j=1

αj

)]
[1 + tλt]σ

2 + σ2 (A28)

= [1 + λt+1(t + 1)]σ2, (A29)

where

λt+1 = max
i:i≤t+1

∑
p
i=1 αi

[(
∑i

j=1 αj

)]
[1 + tλt]

1 + t
, λi

 ∈ [0, 1], (A30)

which is the desired result.
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